BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY OF THE LOWER CRETACEOUS IN CENTRAL AND SE POLAND

Piotr S. DZIADZIO¹, Elżbieta GAŻDZICKA², Izabela PŁOCH² & Jolanta SMOLEŃ²

¹ Polish Oil & Gas Company, Department of Exploration, Regional Division “SOUTH”- Jasło, Asnyka 6, 38-200 Jasło, Poland
² Polish Geological Institute, Rakowiecka 4, 00-975 Warszawa, Poland

Abstract: Detailed biostratigraphy and sequence stratigraphy of the Lower Cretaceous deposits in central and southeastern Poland (the Warsaw and Lublin troughs and the Carpathian Foredeep) were established and referred to the cyclicity nature of the sedimentary basins filling. The surfaces of transgression and maximum flooding, and sequence boundaries were identified on the grounds of geophysical well-logs analysis, including: gamma (G), neutron (N), spontaneous potential (SP), and resistivity (R) logs. The analysis allowed us to distinguish sedimentary sequences of various scales and to correlate them precisely throughout the studied area. The chronostratigraphic framework was based on analyses of ammonite, microfauna and calcareous nannoplankton assemblages analysed in the same series. Mixed, Tethyan and Boreal macro- and microfauna allowed us to identify biostratigraphic zones of both, the Tethyan and Boreal realms. The recognised boreal ammonite zones included robustum, heteroploleuranum (lowermost Valanginian), polytonus-crasus, triptichnoides (Upper Valanginian), amblygonium, noricum (Lower Hauterivian) and gottschei (Upper Hauterivian), as well as the Tethyan zones, such as petransiens (Lower Valanginian), verrucosum (Upper Valanginian) and radiatus (Upper Hauterivian). Eight foraminiferal assemblages were identified in the studied series. Some of them were correlated with the six Berriasian and Valanginian ostracod zones: Cypridea dunkeri, C. granulosa, C. vidrana, Protocythere propria emstandensis, P. auhersonensis and P. franki. Thirteen calcareous nannoplankton zones have been distinguished, in reference to the stratigraphical zonal scheme of the Lower Saxony Basin.

The microfossil data allowed us to recognise the position of the Jurassic/Cretaceous boundary. It was correlated with a sequence boundary by analysis of geophysical logs. This boundary was identified along the studied area, over a distance of more than 170 km. Genetically controlled third order sedimentary sequences (parasequences) were described in the Lower Cretaceous, which record the progress of the sedimentary basins filling. A local curve of relative sea-level changes presented in this paper was correlated with a global one. A reconstruction of depositional sequences allowed us to indicate periods of tectonic activity in the studied area, adjacent to the Tisseyre-Tornquist Zone.

Key words: biostratigraphy, ammonites, foraminifers, ostracods, calcareous nannofossils, depositional systems, sequence stratigraphy, Lower Cretaceous, central and southeastern Poland.

Manuscript received 1 April 2003, accepted 27 April 2004

INTRODUCTION

Lower Cretaceous succession in the Polish Lowlands has been hitherto studied with respect to both stratigraphy (e.g., Marek, 1968, 1969; Marek & Raczyńska, 1973, Raczyńska, 1979), depositional systems, and cyclicity of sedimentation (Leszczyński, 1997). However, except for the Valanginian of the Tomaszów Trough (Kutek et al., 1989) and the Middle and the Upper Albian of the Anнопol area (Kutek & Marcinowski, 1996b), no other biostratigraphic zones comparable to the current stratigraphic schemes applied for the Lower Cretaceous in Europe, have been distinguished. Lack of precise stratigraphic framework of the discussed succession precluded the proper correlation of depositional sequences, as well as reconstruction of depositional history. Progress in the Cretaceous biostratigraphy during the last decade and new methods applied, e.g., sequence stratigraphy, enabled the authors to determine precisely the stratigraphic position of particular Lower Cretaceous sedimentary successions and to correlate them within the area of central and southeastern Poland.

Lack of the Lower Cretaceous exposures within the Polish Lowlands limited the studied material to drill-cores, representing only cored intervals of sections. Well log
analysis was, therefore, important for reconstruction of primary successions of the basin fill. The gamma-ray (GR), neutron (N), spontaneous potential (SP) and resistivity (R) logs were used to distinguish parasequences, parasequence sets and depositional sequences, and their boundaries, enabling interpretation of the observed cyclicity and inferred relative sea-level changes. Finally, the distinguished parasequences and sequences permitted a precise correlation of sedimentary series within the studied area. The chronostratigraphic framework of the reconstructed events was established basing on analysis of ammonite, microfaunal and calcareous nannoplankton assemblages. Study of various fossil groups from the same strata served to improve the resolution of the stratigraphic divisions.

The southern part of the Jura Mountains, some Alpine units and the adjacent regions of southern France, belonging to the Tethyan Realm, became the area of the fundamental research on the Lower Cretaceous stratigraphy. The stratigraphic scheme elaborated in the stratotypes of particular stages is based on the succession of thermophilic taxa described as "Mediterranean" ones. An independent stratigraphic scheme, based on different faunal assemblages, was established for the Boreal Realm. Palaeogeographic position of the Polish Basin, located between the Tethys and the Boreal basins, was perfectly reflected in the composition of assemblages of cephalopods, foraminifers, ostracods, and calcareous nannoplankton in the Lower Cretaceous strata, registering influences of both provinces. Due to their mixed, tethyan-boreal nature, these assemblages are crucial for correlation of the stratigraphic schemes from both palaeogeographic realms.

Another problem discussed in the present paper was the palaeontological evidence of the Jurassic–Cretaceous boundary and its unequivocal identification in the non-cored parts of well sections. In the Polish Lowlands sections this boundary was established according to the schemes of the Boreal Realm and it was placed between the Tithonian and the Berriasian stages and it nearly corresponds to the boundary between the Middle and the Upper Volgian, thus being a few million years older than in the Boreal Realm. Decision of the International Commission on Stratigraphy (ICS) accepting the Tethyan divisions as the obligatory ones requires reinterpretation of the Jurassic–Cretaceous boundary in the Polish Lowlands basins. The facies character of the sediments, developed as shallow-water carbonate-siliciclastic rocks with evaporites, excluded direct application of the Jurassic–Cretaceous boundary over the whole studied area.

The present paper focuses on a precise definition of stratigraphic position of the Lower Cretaceous sedimentary series, and its correlation within central and southeastern Poland. Interpretation of depositional sequences allowed defining relative and eustatic sea-level changes responsible for the observed cyclicity of the basin fill, as well as to reveal some episodes of tectonic activity in the studied area.

STUDY AREA

The Early Cretaceous sedimentary basin in the Polish Lowlands has developed along the margin of the East European Platform, extending in the NW–SE direction (Dadlez et al., 1998). Its evolution was mainly controlled by extensional tectonic activity of the Teisseyre-Tornquist Zone, best manifested by increased subsidence of the area known as the Mid-Polish Trough (Fig. 1A). Tectonic activity of the Mid-Polish Trough was clearly marked from the Permian to the end of Cretaceous, with extensional regime prevailing at least until the Alban (Kutke, 2001) or Turonian (Hakenberg & Świdsowska, 1998). Mobility of the Mid-Polish Trough basement markedly influenced the sedimentation rate in the Early Cretaceous basins, which was reflected in the variable thickness and facies of the deposits. Thickness of the Lower Cretaceous within central and southeastern Poland varies from over five hundred to a few tens of metres, with maximum in the trough axis. There are also deep marine deposits, while more shallow ones are known from the East European Platform. Estimating of primary thickness of deposits and extent of sedimentary basins is difficult because of erosion that succeeded an inversion of the Mid-Polish Trough. Intraformational hiatuses caused by the Early Cretaceous synsedimentary tectonic movements were observed in the whole Lower Cretaceous sequence (cf. Hakenberg & Świdsowska, 1998). Facies differentiation of the Lower Cretaceous sedimentary series displays a latitudinal pattern (Fig. 1C). The southeastern part of the basin was dominated by carbonate sedimentation, while siliciclastic deposits prevailed in the central and northwestern parts, except of the Lower Berriasian developed as extremely shallow-water carbonate and evaporite facies and widespread over the whole area, from Eastern Pomerania to the southeastern part of Lublin region.

MATERIAL AND METHODS

The present paper deals with selected areas of central and southeastern Poland, defined as: the Warsaw and Lublin Troughs, and the Carpathian Foredeep (Fig. 1B). Cores and wire-line logs of the wells: Gostynin IG 1, Gostynin IG 3, Gostynin IG 4, Zychlin IG 3, Łowicz IG 1, Korabiewice IG 1, Warka IG 1, Białobrzegi IG I, Bąkowa IG I, Potok IG 1, Narol IG 1, Narol IG 2, Wiewiórka 4, Wola Wielka 2, Dębica 2, Stasiówka I, Ropczyce 7, Zagorzyce 7, Zagorzyce 6, and Nawsie 1 were examined for purposes of bio- and sequence stratigraphy.

Investigations included the analyses of ammonites, microfauna (foraminifers and ostracods), as well as calcareous nannofossils. These studies resulted in discerning of biostratigraphic zones, and thus in the determination of stratigraphic position of individual sedimentary successions. The most important results of palaeontological studies are shown in Figs 2–32.
Fig. 1. A. Palaeotectonic map of Poland showing the main structural elements within the Polish Basin; B. Location of the studied area relative to the present-day tectonic units; C. Location of studied boreholes, outcrops and correlation profiles; lithology of the Lower Cretaceous within the studied area.
The ammonites were collected also from the outcrops at Wawał near Tomaszów Mazowiecki and from cores of Tuszyń 9 and Tuszyń Geo-5 wells, located within the Tomaszów Trough (comp. Fig. 1C). They also came from the Professor S. Marek’s collection housed in the Geological Museum of the Polish Geological Institute (abbreviated MuzPIG), from the collections of the Faculty of Geology, University of Warsaw (abbreviated IGP), and the Institute of Palaeobiology Polish Academy of Sciences in Warsaw (abbreviated ZPAL), as well as from the private collection. These collections include specimens gathered by: R. Marciniowski, A. Radwański, C. Kulicki, J. Kutek, J. Dzik, A. Kaim, T. Praszkier and K. Dembicz. The specimens from the J. Dzik’s collection are labelled – ZPAL Am IX, those from the K. Dembicz and T. Praszkier’s collection – x, while the collections of C. Kulicki, J. Kutek, R. Marciniowski, A. Radwański, and the author (I. Ploch) have catalogue numbers of the Faculty of Geology Museum, Warsaw (IGP). Comparative studies on the Lower Cretaceous am­monites from the Polish and the Lower Saxony basins were carried out by I. Ploch at the Geological Institute in Han­nover, and at the Ruhr-Universität in Bochum (collections of J. Mutterlose, M. Wippich and K. Kessel). Also the private collection of K. Wiedenroth, including the ammonites from German basins, was studied for the same comparative purposes. The collections of ammonites from the Tethys Realm were studied at the Geological Museum of the Dolo­mite Institute, Grenoble, and at the Geological Museum of the Claude-Bernard University in Lyon, including the S. Re­boulet’s private collection.

The samples for micropalaeontological studies of foraminiferal and ostracod assemblages, 0.5–0.8 kg each, were collected from the fully cored intervals and the sampling density depended on the core size and lithological variabil­ity (each metre on the average, locally more densely). Hard rocks were disintegrated using sodium sulphate decahydrate (Glauber’s salt), while soft ones were only washed with wa­ter. The disintegrated material was washed on 0.1 mm meshes. Photographs were taken using scanning electron microscope LEO 1430, at the Microscope Photography Laboratory of the Polish Geological Institute. Most samples for calcareous nannoplankton analyses were collected si­multaneously from the same layers as those for micropalaeo­ontological studies, as well as from the ammonite-bearing deposits. The only exception was carbonate-free sediments from which samples were not collected. Because of the rel­atively low amount of nannoplankton in the studied sed­i­ments, the samples were centrifuged. Samples rich in clay minerals were earlier treated ultrasonically. Analyses were made using OLYMPUS BH-2 light microscope with polariza­tion and phase contrast equipment. Smear slides were pre­pared following the standard techniques described by Perch-Nielsen (1985). Selected samples were also exam­ined using scanning electron microscope LEO 1430, where from coccolith micrographs (Figs 26–31) were taken as well.

Calcareous nannoplankton was studied in the sections of eleven wells in central and southeastern Poland. Addi­tionally, some samples from the outcrops at Wawał and Annopol were analysed because of expected correlation of nan­noplankton and ammonite zones. The amount of nannofos­sils ranged between very low and relatively high in the studied samples. Some coccolith assemblages, especially from the younger (Hauterivian–Aptian) deposits were abundant and taxonomically diversified. Also the preservation of nan­noflora was different in individual sedimentary units and re­gions, e.g., coccoliths from the Lower Aptian of Bialobrezgi IG 1 well became heavily dissolved (Fig. 30), whereas those from the Upper Alban of Annopol quarry and Bąkowa IG 1 well showed rather an overgrowth of calcite crystals (Fig. 31). Some samples, especially those from black and low­carbonate shales or coarse clastic sandstones, did not con­tain coccoliths at all.

Simultaneously with the biostratigraphical studies, a detailed analysis of wire-line logs was performed. The set of original logs of gamma-ray (GR), neutron (N), spontaneous potential (SP), and resistivity (R) was digitized for this analysis. Digital wire-line logs of the following wells from the peri-Carpathian area were also used: Wiewiórka–4, Wola Wielka–2, Dębica–2, Stasiówka–1, Dębica-10K, Rop­czycy–7, Zagorzyc–6, Zagorzyc–7, and Nawsie–1. Most logs were normalized and recalculated to API units to stand­ardise geophysical measurements made at various times. The following sets of logs were used for correlation and presentation: Gamma Ray – Neutron and SP – Resistivity. Interpretation of depositional sequences based on geophys­i­cal well data included the following stages: (1) identifica­tion of main trends in the logs and analysis of their nature in juxtaposed GR as well as N logs and logs of SP and R (ac­counting for caliper log), (2) calibration of log variability using lithological data from core descriptions and interpre­ta­tion of non-cored intervals, (3) introduction of biostratig­raphic scheme, (4) delineation of intervals corresponding to condensed strata, maximum flooding surfaces and trans­gressive surfaces, (5) distinction of parasequences, parase­quence sets, sequences, and their boundaries, (6) interpreta­tion of supposed facies changes, and (7) interpretation of sedimentation cyclicity in the Lower Cretaceous section.

LOWER CRETACEOUS STRATIGRAPHY

- STATUS QUO

Previous stratigraphic studies of the Lower Cretaceous in Poland included both biostratigraphy, based on various groups of macro- and microfossils, and lithostratigraphy used mainly in non-fossiliferous sedimentary sequences. Ammonites – the orthostratigraphic group – provided base for a stratigraphic scheme of the Upper Berriasian, Valanginian, and Hauterivian (Marek & Raczyńska, 1973; Marek et al., 1989; Marek & Rajska, 1997; Kutek et al., 1989; Marciniowski & Wiedmann, 1985, 1990), whereas stratig­raphy of the Lower Berriasian, that includes Purbeckian facies lacking ammonites, was based on ostracods (Bielecka & Sztejn, 1966; Marek et al., 1989). Micropalaeontological methods were also applied to the younger Lower Creta­ceous sequences (Moryc & Waśniowska, 1965; Kubia­towicz, 1983; Sztejn, 1984; Gaździcka, 1993). Lithostra­tigraphic zonation of the Lower Cretaceous deposits in the
Polish Lowlands was elaborated by Raczyńska (1979), and Marek and Raczyńska (1979). Lithostratigraphic scheme of the Radom–Lublin area was recently modified by Marek (1997). This scheme includes both formal and informal units: formations and members. A formal subdivision of the Lower Cretaceous was established in central and northwestern Poland (mainly in the Kujawy region), while an informal one within the southeastern Poland. In the study area (Warsaw and Lublin Troughs), it is difficult to distinguish these lithostratigraphic units because of differences in facies development between them and the stratotype sections.

An argillaceous-marly succession with beds of *Cyrene* coquinas are considered as the oldest Lower Cretaceous deposits in central Poland. It is recognised as the Skotniki Member of the Keynia Formation, which includes mainly the Upper Jurassic carbonate-siliciclastic series with evaporites (Marek, 1997). The stratigraphic position of this sedimentary series was established as the lowermost Ryazanian (ostracod Zone A), corresponding to the *runctoni* ammonite Zone in the Boreal Province or to the *jacobi-grandis* Zone in the Tethyan Province (Marek & Rajksa, 1997). This statement, however, contains a major inconsistency as the Boreal *runctoni* Zone is correlated with the Tethyan *occitana* Zone and not with the *jacobi or jacobi-grandis* zones (Haq et al., 1988; Bown et al., 1999). It corresponds, thus, to the higher part of the Lower Berriasian or the Middle Berriasian, while the *jacobi-grandis* ammonite Zone includes the uppermost Tithonian and the lowermost Berriasian. Also Lesczyczyński (1997) placed the deposits of the Skotniki Member in the Upper Volgian and the lowermost Berriasian, what contradicts the previous estimation of its stratigraphic position as the lowermost Ryazanian. In the Mazowsze (Mazovia) region, where sedimentary series of the Purbokiean type are widely distributed and are quite thick (e.g., more than 110 m in Gostynin IG 3 and Żychlin IG 3 wells), the presence of the ostracod Zone A was not confirmed. The Skotniki Member is there distinguished, however, based on lithological and facies characteristics of the sediments. Arenaceous limestones, sandstones with siderites and ferruginous oolites, overlie the Skotniki Member, dominated by argillaceous sediments, and mudstones or claystones with marine invertebrates and plant remains.

This series is distinguished as the Rogoźno Formation including the Kajetanów, the Zakrzew, and the Opoczki members. A formal subdivision of the Lower Cretaceous sedimentary series in central and north-western Poland is dominated by siliciclastic, fine- and coarse-grained deposits.

Beginning from the southern border of the Warsaw Through, including Magnuszew and Radom blocks, towards the southern part of the Lublin Upland, siliciclastic facies gradually change into carbonate ones. Within Lubaczów region, the Lower Cretaceous is developed as shallow-water, often bioclastic and oolithic limestones, sandy marls or calcareous sandstones. However, towards the axial part of the Mid-Polish Trough (the NE margin of the Holy Cross Mountains) the amount of siliciclastic material in sediments increases considerably. Marl with intercalations of claystones or fine-grained sandstones with argillaceous matrix and levels of siderites and chamosite-goethite ooids dominate within this area. Then, the Lower Cretaceous in SE Poland requires a lithostratigraphic division different from that in central Poland. The Bialobrzegi Formation in the NE margin of the Holy Cross Mountains up to the Magnuszew and Radom blocks, and the Cieszanów Formation in the Lubaczów area are equivalents of the Wloclawek Formation distinguished within Kujawy region (Marek, 1997). These formations include mainly the Upper Valanginian and Hauterivian deposits, according to the hitherto accepted stratigraphic interpretation (Marek, 1997). Sands and sandstones with glauconite and phosphorite nodules in the upper part, which overlie the above-described sedimentary series, are included into the Mogilno Formation. Its stratigraphic position was determined as the Barremian–Middle Albian. It should be noted, however, that the Lower Cretaceous stratigraphy in this area was hitherto inadequately recognized. Isolated caps of the Lower Cretaceous deposits were also documented in the Carpathian Foredeep, near Dębica and in the basement of Carpathian nappes (Fig. 1). These series include shallow water carbonates and marly-carbonate rocks, deposited in lagoons, barriers, tidal flats, shoals, and platform margins (Maksym et al., 2001). They are attributed to
the Ropczyce and Dębica Series, of the Berriasian and Valanginian age (Moryc, 1997; Zdanowski et al., 2001).

RESULTS OF BIOSTRATIGRAPHICAL STUDIES

AMMONITE BIOSTRATIGRAPHY

Drill cores from central and southeastern Poland provided significant palaeontological evidence of the Lower Cretaceous ammonites. They are especially abundant and well preserved within the Berriasian and Valanginian deposits (Figs 2, 3). Nevertheless, only the exposure at the Wąwał clay-pit near Tomaszów Mazowiecki provided rich palaeontological material suitable for a detailed study of the ammonite assemblages succession. The peculiar palaeogeographic position of the Polish Basin, situated between the two major palaeogeographic provinces: Tethyan and Boreal ones, resulted in variable and alternating influences of them both. The ammonites have migrated to the Polish Basin from the south and/or from the north, according to predominant influences of either province. Because of a mixed nature of the ammonite assemblages found in the Lower Cretaceous sections, the Tethyan and the Boreal ammonite zones are used in parallel.

The Berriasian ammonites were not revised in detail during this study. Until now two informal stratigraphic units were distinguished in the Berriasian strata within the Polish Lowlands: "Beds with Riasanites, Himalayites and Picte-
ticeras", and “Beds with Surites, Euthymiceras and Neocosmoceras” (Marek, 1964, 1968, 1969, 1977a, 1983, 1997; Marek & Raczyńska, 1973, 1979; Marek & Shulgina, 1996). The lower unit - “Beds with Riasanites, Himalayites and Picteticeras” - was correlated with the Middle and the lower part of the Upper Berriasian and referred to the Tethyan occitanica Zone and to the lower part of the boissieri Zone (English kochi and icenii zones) (Marek & Shulgina, 1996; Marek & Rajska, 1997). The upper unit - “Beds with Surites, Euthymiceras and Neocosmoceras” - was referred to the upper part of the boissieri Zone (English stenomphalites and albidum zones) (Marek & Rajska, 1997; Marek et al., 1989; Marek & Shulgina, 1996). Baraboshkin (1999) has questioned the presented scheme, pointing out that Riasanites riasanensis (Nikitin) on the Russian Platform occurs in the Upper Berriasian, so it may not be correlated with the Tethyan occitanica Zone. He also doubts the determinations of Riasanites riasanensis (Nikitin) specimens from Poland.

Within the Berriasian strata the ammonites are abundant and relatively well preserved. However, some specimens obtained from drill cores are crushed, what hinders their correct taxonomic identification. The Neocomites neoconiensis (d'Orbigny) and Neocomites teschenensis (Uhlig) (hitherto interpreted as Neocomites platycostatus Sayn) were found in the cored sections from Koraczewko IG 1 (depth 153.3 m) and Kcynia IG 2 (depth 252.5-6 m). They have been found within the uppermost part of the sedimentary sequence hitherto assigned to the Berriasian. The following species that occurred in these sections were described from the Lower Valanginian: Neocomites neoconiensis (d'Orbigny), that appears in the petransiens Zone (e.g., Nikolov, 1960; Company, 1987; Reboulet, 1995), and Neocomites teschenensis (Uhlig) from the campylotoxus Zone (e.g., Nikolov, 1960; Company, 1987; Thieuloy et al., 1990; Reboulet, 1995). The abundance of ammonite shells in the dark, argillaceous deposits of the uppermost Berriasian may indicate a decreasing of the accumulation rate (a condensed interval). As a result, the older, Berriasian ammonites are accompanied by the younger, Valanginian specimens. These ammonites may represent the earliest Valanginian taxa in the Mid-Polish Basin.

The lowermost Valanginian ammonites: Neocomites and Neohoploceras (Fig. 4A, B) were also found in cored section from Łowicz IG 1, at the depth 566.7 m (Fig. 2). They occur beneath the layer containing Boreal ammonites of the genus Platylenticeras. They are typical of the robust-
Fig. 4. A. Neocomites sp., nr IGP II, Łowicz IG-1 (566.7 m), Lower Valanginian; B. Neohaplaceras sp., nr Muz.PIG 1652 II 203, Łowicz IG-I (566.8 m), Lower Valanginian; C, D. Platyleticeras (Tolypeceras) fragile Koenen, nr IGP 2, Wąwal, Lower Valanginian, heteropleurum Zone (?); E, F. Platyleticeras (Platyleticeras) parcum parcum Koenen, phragmocone, nr x 9, Wąwal, Lower Valanginian, robustum Zone. Scale bar = 1 cm.
the “Beds with Platylenticeras, Neocomites and Karakaschiceras” and “Beds with Dichotomites and Saynoceras” (Marek & Rajska, 1997). These strata are interpreted as regressive, shallow, and locally limnic deposits because of their sedimentary features (Marek, 1969). Fauna is very rare in these strata. Fragments of ammonites described by earlier authors as Polyptychites sp. (Łewiński, 1930, 1932; Pruszowski, 1962; Witkowski, 1969) were found in the Wąwał section. The lack of photographs and detailed descriptions of the earlier specimens precludes a revision of their determinations. These findings led to the inclusion of this part of the section into the “Beds with Polyptychites”, and to correlate them with the Tethyan campylothoxus Zone (Fig. 32). Core data (mainly from Żychlin IG I) provided incomplete and poorly preserved specimens (Fig. 5E–G), which can only be determined as Polyptychites sp., without the species attribution (Marek, 1968, 1984).

The appearances of Saynoceras verrucosum (d’Orbigny) (Fig. 5A–D) clearly mark the Upper Valanginian in the Wąwał exposure. This species characterizes the verrucosum Subzone, described also as the verrucosum horizon within the verrucosum Zone (Kutek & Marciniowski, 1996a). The core material has not provided unequivocally identifiable fossils of this ammonite species. The forms described as Saynoceras verrucosum (d’Orbigny) (Marek, 1969) are juvenile specimens that may belong to some other genus as well. Only in the core from Potok IG 1 (at the depth 239.0–239.35 m) Valanginites nucleus (Roemer) was found (Fig. 7G, H), which may be indicative of the verrucosum Zone. Valanginites nucleus (Roemer) (Fig. 7G, H) is abundant in the Wąwał outcrop. Boreal ammonites of genus Dichotomites appear above the last occurrence of Saynoceras verrucosum (d’Orbigny) in the higher part of the Wąwał section. This fact allowed referring this part of the section to the German ammonite zonation. The species: Valanginites nucleus (Roemer), Neohoploceras brandesi (Kenen), and Dichotomites are concurrent in the Wąwał section, in an interval ca. 0.5 m thick. The specimens of Valanginites nucleus (Roemer) in this part of the section differ from the earlier forms in their nearly smooth shell and greater dimensions. The same features are displayed by the terminal forms of this species in the Lower Saxony Basin (Kurt Wiedenroth, pers. comm., 2000). This indicates that they appeared in the Polish Basin together with ammonites of genus Di-
Fig. 5. **A, B. Saynoceras verrucosum** (d’Orbigny), body chamber, nr IGP 5, Wąwal, Upper Valanginian, *verrucosum* Zone; **C, D. Saynoceras verrucosum** (d’Orbigny), body chamber, nr IGP 233, Wąwal, Upper Valanginian, *verrucosum* Zone; **E. Polyptychites** sp., nr Muz.PIG 1652 II 206, Zychlin IG-1 (425.6 m). Lower Valanginian; **F. Polyptychites** sp., nr Muz.PIG 1652 II 207, Zychlin IG-1 (421.7 m). Lower Valanginian; **G. Polyptychites** sp., nr Muz.PIG 1652 II 205. Zychlin IG-1 (425.6 m). Lower Valanginian; **H, I. Platylenticeras** (*Platylenticeras*) *robustum* robustum (Koenen), phragmocene, nr x 8. Wąwal. Lower Valanginian, *robustum* Zone. Scale bar = 1 cm
Dichotomites immigrating from the Lower Saxony Basin (Ploch, 2003). The range of this species in the Lower Saxony Basin reaches the hollwedensis Zone; hence, the described interval is attributed to this zone. The younger zones crassus and polytomus were combined because of the lack of precise location in the section of the nominal species Dichotomites crassus Kemper. The species: Dichotomites evolutus Kemper (Fig. 6A, B) (occurring since the first appearance of genus Dichotomites in the Wąwał section) and Dichotomites krausei Kemper (Fig. 6E) occur in both horizons and cannot be used for their separation. Prodichotomites complanatus (Koene) appears in the Wąwał section earlier than Dichotomites, and its range ends in the triptychoides Zone. In the Lower Saxony Basin, its range is limited to the polytomus Zone (Kemper, 1978).

Fig. 6. A, B. Dichotomites evolutus Kemper, phragmocone, nr IGP 2, Wąwał, Upper Valanginian; C, D. Dichotomites triptychoides Kemper, nr IGP 3, Wąwał, Upper Valanginian, triptychoides Zone; E. Dichotomites krausei Kemper (smaller specimen); Dichotomites evolutus Kemper (larger specimen), nr IGP 4, Wąwał, Upper Valanginian, crassus, polytomus Zone

The appearance of Dichotomites triptychoides Kemper in the Wąwał section (Fig. 6C, D) marks the base of the triptychoides Zone. In contrast to the situation in the Lower Saxony Basin where Dichotomites evolutus Kemper disappears before the appearance of Dichotomites triptychoides Kemper (Kemper, 1978), the two species co-occur in the Mid-Polish Basin. Two morphological types represent intraspecific variation in Dichotomites evolutus Kemper - one with higher, the other with lower whorl height. Unlike in the
Lower Saxony Basin, mainly forms with lower whorl height are present in the Polish Basin. Gigantic forms also appear in the higher part of the range of this species, with shells reaching even one metre in diameter (specimen collected by A. Kaim). No specimens of this size were reported from outside the Polish Basin. Difference between the populations of *Dichotomites evolutus* Kemper from the Polish Basin and the neighbouring Lower Saxony Basin, as well as the differing stratigraphic ranges of this species in both basins, indicate the development of endemic features within the Polish Basin population. Perhaps a better adaptation to environmental conditions in the Polish Basin, subject to both the Tethyan and Boreal influences, allowed for the longer occurrence of this species, as compared to the Lower Saxony Basin. *Dichotomites evolutus* Kemper and *Dichotomites triptychoides* Kemper also co-occur in the borehole material. Abundance of ammonites in the horizons with *Dichotomites*, accumulations of shells of large ostracid bivalves and abundant glauconite, both in the Wałwal outcrop and in borehole core material, may indicate a low sedimentation rate and even a break in sedimentation. An erosional boundary is present in the higher part of the Wałwal section. The time interval represented by this hiatus cannot be determined. The sediments overlying this boundary do not contain datable fossils. They may belong to the Upper Valanginian or Lower Hauterivian (Fig. 3). No record of an ero-

Fig. 7. A. *Ammonites* sp., without number of PGI Museum, Tuszyn Geo-5 (1072.0 m). Upper Aptian; B. *Ammonites* sp., without number of PGI Museum, Sochaczew 2 (1486 m). Barremian Aptian; C. *Ammonites* sp., without number of PGI Museum, Tuszyn 9 (884.0 m). Barremian Aptian; D. *Leopoldia leopoldii* (d’Orbigny), nr IGP 21, Lowicz IG-1 (524 m). Lower Hauterivian, *radiatus* Zone; E. *Leopoldia leopoldii* (d’Orbigny), nr IGP 31, Lowicz IG-1 (524 m). Lower Hauterivian, *radiatus* Zone; F. *Deshavesites* sp., without number of PGI Museum, Białobrzegi IG-1 (925.9 m). Lower Aptian; G, H. *Walanginites nucleus* (Roemer), morphotype *nucleus*, macroconch., nr Muz.PIG 1652.11.197, Potok IG-1 (239.2-239.35 m). Upper Valanginian, *verrucosum* Zone. Scale bar = 1 cm.
sional break was observed in core material. It should be stressed, however, that no ammonites were found that would suggest the presence of the uppermost Valanginian deposits.

The first Hauterivian ammonite zone is the radiatus Zone. It is documented by the appearance of Leopoldia leopoldi (d’Orbigny) (Fig. 7D, E) in the core material from Łowicz IG 1, at depth of 524.9 m. These strata have hitherto been included into the Upper Valanginian (Marek, 1986). The state of preservation of the specimens from the Upper Valanginian, hitherto described as Leopoldia sp. (Marek, 1969), does not allow in the present author’s opinion for their generic determination. The higher Lower Hauterivian zones, included in the so-called “Beds with Endemoceras”, are documented by the following species: Endemoceras noricum (Roemer), Endemoceras aff. enode Thiermann, and Endemoceras cf. amblygonium (Neumayer & Uhlig) (Raczyńska, 1979; Marek & Rajška, 1997), relatively rare in comparison with the occurrences of Dicathomites. Their good preservation allowed Raczyńska (1979) to determine the specimens correctly. The noricum and amblygonium Zones, based on them, are suggested in this paper (Fig. 32).

The Upper Hauterivian strata are documented by the species Simbirisites (Crasspedodusic) cf. gottschei (Koenen) and Simbirisites (Crasspedodusic) sp., that were found in core material from Żychlin IG 1 (Raczyńska, 1979). The sediments including them were attributed to the “Beds with Simbirisites” (Marek & Rajška, 1997). A well-preserved ammonite Simbirisites gottschei (Koenen) (determination by L. Karczewski and R. Marcinowski) was found in core material from Korabiewice PIG 1, though, regrettably, the specimen is lost. The gottschei Zone (Fig. 32) was proposed basing on the findings of Simbirisites gottschei (Koenen).

The Barremian and Aptian deposits, hitherto considered as quite poor in macrofauna and treated jointly, contain incompletely preserved, scarce ammonites. A fragment of ammonite Deshayesites (see: Fig. 7F – Deshayesites sp.) was found in the core from Białobrzegi IG 1 (at the depth 925.9 m), indicating its Early Aptian age. This specimen was interpreted hitherto as Endemoceras sp. and attributed to the Lower Hauterivian (Marek, 1977b). Other ammonite fragments are also known from the sedimentary successions described as Barremian–Aptian (Fig. 7A–C); their age was suggested to be Aptian (Raczyńska, 1979). These findings indicate that the sedimentary basin in the area of Poland was of an open marine character.

OSTRACOD BIOSTRATIGRAPHY

The analysis of the ostracod assemblages, that have been found in well cores from central and south-eastern Poland, allowed precisely defining and, in some cases, revising the biostratigraphy of the Lower Cretaceous sedimentary series. This concerns especially the older Berriasian deposits in the “Purbeckian facies”. The biostratigraphic analysis of the ostracod assemblages led to identify six ostracod zones in the Berriasian and the Valanginian strata. In many cases, they are confirmed by the results of calcareous nanoplankton analyses and correlated with the ammonite zones (Fig. 32). The ostracod zones accepted in the present study were established by Anderson (1985) in the Berriasian of England (in Purbeckian facies), and by Kubiatowicz (1983) in the Valanginian of central Poland.

Stratigraphy of the Berriasian sedimentary series in the Warsaw Trough was mainly based on distribution and appearance of new species of the genus Cypridea. Up to now, in sediments of the “Purbeckian facies” in Poland, six local ostracod zones were recognized and labelled as zones: F, E, D, C, B, and A (Bielecka & Sztejn, 1966). The boundary between the Jurassic and Cretaceous systems was placed between the zones B and A (Marek et al., 1989; Sztejn, 1991, 1997). In this paper, the sedimentary series with ostracod assemblages of the zones E through B, hitherto included into the Upper Tithonian (Marek et al., 1989), is assumed to be of Berriasian age. This series includes the upper part of the Kęnya Formation, developed as carbonate-sulphate (Wieniec Member) and marly-carbonate sediments (Skotniki Member). The biostratigraphic boundary between the Tithonian and the Berriasian stages is largely equivalent to a sequence boundary and equates with the base of carbonate-sulphate deposit of the Wieniec Member. The taxonomic composition of the ostracod assemblages in the studied material enabled correlation of the ostracod zones established in Poland with those of the Purbeckian series in England.

This correlation is sometimes difficult because of the different nature of the ostracod fauna and due to lithological discontinuities, as well as to limited coring of the studied wells. The recently established correlation of the Purbeckian deposits of England with the standard Berriasian section in the Tethyan Province (Hoedemaeker, 2002) improved the reliability of the stratigraphic zonations of these sedimentary series. The sedimentary series in the Purbeckian of England, containing ostracods of the Cypridea dunkeri Zone, has been correlated with the ammonite jacobi/grandis Zone of the Lower Berriasian. The Cypridea granulosa Zone is equivalent to the Middle Berriasian occitiana Zone, while the sediments bearing ostracods of the Cypridea vidrana and Cypridea setina zones have been correlated with the Upper Berriasian boissieri Zone.

The Berriasian sediments were documented by ostracod fauna in central Poland (wells: Gostynin IG 1, Łowicz IG 1, and Żychlin IG 3), at the Wąwal outcrop, and in south-eastern Poland, in the Carpathian Foredeep (wells: Zagorzyce 7, Wiewiórka 4) (Fig. 1). The English ostracod zone Cypridea dunkeri was identified in the Lower Berriasian deposits from the Warsaw Trough. This Zone can be correlated with the Polish local ostracod zones E, D, and C sensu Bielecka and Sztejn (1966) (Fig. 32). The same species occur both in the Purbeckian of Poland and England, such as: Cypridea inversa Martin, C. tumescens praecursor Oertli, C. peltoides peltoides Anderson (Fig. 14F, G). The ostracodes mentioned above and the others species of genera: Cypridea, Klionea, Rhinocypris, Darvinula, Scarbiculocypris, and Dazonella (Dazonella sp.; Fig. 14K) were found in cores from Gostynin IG 1 (Fig. 8, samples 2, 3) and from Żychlin IG 3 wells (Fig. 9, samples 1–4). Berriasian age of sediments was also recognized on the base of the ostracod assemblages, studied in the southern part of the Carpathian Foredeep, near Dębcia (wells Zagorzyce 7 and Wiewiórka 4). Detailed lithofacies analysis of the Jurassic–Cretaceous
Fig. 8. Distribution chart of the foraminifers and ostracods in the Lower Cretaceous deposits of the Gostynin IG-1; for lithological description – see Fig. 2
BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY OF THE LOWER CRETACEOUS

Fig. 9. Distribution chart of the foraminifers and ostracodes in the Lower Cretaceous deposits of the Żychlin IG-3; for lithological description – see Fig. 2

boundary strata in the basement of the Carpathians between Rzeszów and Dębica are available (Zdanowski et al., 2001; Maksym et al., 2001) to indicate that the Berriasian in the Zagorzyce 7 represents part of the Ropczyce Series (the lower calcareous-dolomitic member and the higher calcareous-marly member). A set of deposits in the Wiewiórka 4 section is lithologically similar to that from Zagorzyce 7 (Zdanowski, 2001; Zdanowski & Gregosiewicz, 2001). The Berriasian age of deposits was documented basing on microfossils in the cored sections from Wiewiórka 4 (Fig. 10, sample 1). The presence of ostracods Cypridea tumescens tumescens (Anderson) (Fig. 14H), Klisiana alata Martin, and Rhinocypres jurassica (Martin) (Fig. 14L), characteristic of the English Cypridea dunkeri Zone, in the deposits of the Ropczyce Series allowed to including these strata in the Lower Berriasian. The ostracod assemblage may be also correlated with that one from the Lower Berriasian in the Jura Mountains at the French-Swiss border (Detraz & Momjon, 1989). In the Lower Berriasian from Zagorzyce 7, only fragments of charophytes (Fig. 15.1) were found (Fig. 11, samples: 1, 2).

In the Middle Berriasian of the Warsaw Trough, developed in Purbeckian facies, the Cypridea granulosa Zone was distinguished. The appearance of the index species Klisiana kujaviana Bielecka & Sztejn (Fig. 14J) marks the ostracod zone B sensu Bielecka and Sztejn (1966). In this paper, the Zone B of Bielecka and Sztejn was correlated with the English Cypridea granulosa Zone and included to

<table>
<thead>
<tr>
<th>Stage</th>
<th>Depth</th>
<th>Lithology</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauterian</td>
<td>U</td>
<td>L</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Valanginian</td>
<td>U</td>
<td>L</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Berriasian</td>
<td>M</td>
<td>L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Fig. 10. Distribution chart of the foraminifers and ostracodes in the Lower Cretaceous deposits of the Wiewiórka 4; for lithological description – see Fig. 2

<table>
<thead>
<tr>
<th>Stage</th>
<th>Depth</th>
<th>Lithology</th>
<th>Foraminifera</th>
<th>Ostracoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ber.</td>
<td>1440</td>
<td>8</td>
<td>Eoguemblicella sp.</td>
<td>Epistilidae stuba.</td>
</tr>
<tr>
<td>Valan. B-Alb</td>
<td>1460</td>
<td></td>
<td>Planulina sp.</td>
<td>Planulina sp.</td>
</tr>
</tbody>
</table>

Fig. 11. Distribution chart of the foraminifers and ostracodes in the Lower Cretaceous deposits of the Zagorzyce 7; for lithological description – see Fig. 2

<table>
<thead>
<tr>
<th>Stage</th>
<th>Depth</th>
<th>Lithology</th>
<th>Foraminifera</th>
<th>Ostracoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valang.</td>
<td>2720</td>
<td>11</td>
<td>Ammolaria calcarata</td>
<td>Leptocypris hyascia.</td>
</tr>
<tr>
<td>Hau.-Alb.</td>
<td>2740</td>
<td>9</td>
<td>Ammonia amnicola</td>
<td>Leptocypris rostrata.</td>
</tr>
</tbody>
</table>

Table:

- **Wiewiórka 4**
 - Foraminifera:
 - *Eoguemblicella sp.*
 - *Planulina sp.*
 - Ostracoda:
 - *Epistilidae stuba*.

- **Zagorzyce 7**
 - Foraminifera:
 - *Ammolaria calcarata*
 - *Ammonia amnicola*
 - Ostracoda:
 - *Leptocypris hyascia*.

This table and diagram provide a detailed view of the foraminifers and ostracodes distribution in the Lower Cretaceous deposits of Wiewiórka 4 and Zagorzyce 7, along with the corresponding lithological descriptions as indicated in Fig. 2.
the Middle Berriasian. These parts of the Middle Berriasian sediments probably represent the marine phase of the *Cypriidea granulosa* Zone that characterized the "Cinder Beds" in the Purbeckian of England. The zonal markers of Zone B and the other species of the genera: *Rhinocypris*, *Darwinula*, and *Bisulcypris* were found in cores from Gostynin IG 1 (Fig. 8, sample 4) and from Żychlin IG 3 wells (Fig. 9, sample 5).
The Cypridea vidrana Zone was established in the lowermost part of the Upper Berriasian within the Warsaw Trough. These sediments contain ostracods of the Zone A sensu Bielecka and Sztejn (1966) with index species Cypridea obliqua polonica Sztejn (cored section from Żychlin IG 3) (Fig. 9, sample 6). In this paper, sediments representing the ostracod zone A were correlated with the lowermost part of the English Cypridea vidrana Zone because of the presence of Cypridea obliqua Wolburg, common in the Purbeckian strata of Poland and England (in Poland subspecies
The ostracod zone described as the “assemblage with Protocythere propria emslandensis” was recognized in the higher part of the Upper Berriasian, developed in the Warsaw Trough as marine deposits bearing ammonites of the genus Riasanites and Surites (Marek et al., 1989). It may be discerned due to the appearance of the index species Protocythere propria emslandensis Triebel, and of the genera: Protocythere propria emslandensis and Protocythere sp. have been found (Fig. 8, sample 17). The Upper Hauterivian–Lower Barremian sediments southeastwards to the Warsaw Trough are developed in carbonate facies attributed to the Cieszanów Formation (Marek et al., 1989). An assemblage of scarce ostracods, including the genera: Protocythere, Schuleridea, Cythereoida and Paramocythere was found in these sediments (Narol IG 2, Fig. 12, samples 1–7). Few ostracods were also found in the Upper Barremian–Lower Aptian deposits, dated by foraminifers and calcareous nanoplankton (Fig. 32), in core from Białobrzegi IG 1 well (Fig. 13, samples 1–7), but they are not informative stratigraphically.

FORAMINIFERAL BIOSTRATIGRAPHY

The micropaleontological analysis of the well core material from central and southeastern Poland (Figs 8–19) revealed the presence of different foraminiferal assemblages characteristic of individual stages of the Lower Cretaceous. The studied material revealed also species not earlier described from the Lower Cretaceous strata of Poland. This allows revising the biostratigraphy of some lithological series. The specific nature of foraminiferal assemblages from studied cores does not allow using previously described foraminiferal zonation schemes, neither from the Tethys area nor from the Boreal Province. Many of those schemes are only applicable to a limited regional biostratigraphy in the shallow marine boreal or tethyan basins. The first formal foraminiferal zonation scheme for the northern Tethys was established by Moullade (1984), who subdivided the Berriasian to Albian strata into fourteen zones. Unfortunately, most of the zonal markers are either absent or extremely rare in the Lower Cretaceous of the Polish Basin. In this study, biostratigraphic analysis led to establish eight foraminiferal associations and their stratigraphical succession. Only Lentilolina eichenbergi Zone (Moullade, 1984) was recognized in the Upper Valanginian deposits of the Warsaw Trough.

The Berriasian deposits have been documented by foraminiferal assemblages in central Poland (cored sections from: Gostynin IG 1, Łowicz IG 1 and Zychlin IG 3), in the southeastern Poland and in the Carpathian Foredeep (Zagorzyce 7, Wiewiórka 4) (Fig. 1). In the Warsaw Trough, the foraminiferal assemblage with Verneuilina submunita, Verneuilina angularis, and Verneuilinoides faraonica has been recognized in the Lower Berriasian sediments, correlated with the Cypridea dunkeri ostracod Zone (Fig. 32). Foraminiferal species, such as: Verneuilina submunita Gorbatchik (Fig. 14D), Verneuilina angularis Gorbatchik (Fig. 14B), Verneuilinoides faraonica (Said & Bakarat) (Fig. 14A, E) and Dorothisubtrochos (Bartenstein) (Fig. 14C) have not been found earlier in Poland. The species mentioned above and the others of genera: Verneuilina and Verneuilinoides have been recorded in the all studied well sections. They are especially abundant in cores from Gostynin IG 1 (Fig. 8, samples 2, 3) and from Zychlin IG 3 (Fig. 9, samples 2–4). Similar foraminiferal assemblages are known from the Berriasian deposits of the Tethyan Province in Romania (Neagu, 1997) and Crimea (Kuznetzova & Gorbatchik, 1985). The appearance of foraminifers in the “Pur-
beckian facies” indicates short marine ingressions preceding the Middle Berriasian transgression that probably came from the southeast.

The foraminiferal assemblage with *Trophammina inflata*, *Haplophragmoides concavus*, and *Ammobaculites agglutinans* (Fig. 32) was distinguished in the higher part of the Upper Berriasian. In central Poland, this is a marine succession with ammonites of the genera *Riaasanites* and *Sirites* (Marek et al., 1989). In the present study, this sedimentary series was correlated with the *Protocythere propria* emulsadensis and the lowermost part of *Pseudoprotocythere aubersonensis* ostracod zones. The presence of abundant agglutinated foraminifers, such as: *Rhzammina indivisa* Brady (Fig. 15A), *Trophammina inflata* (Montagu) (Fig. 15I, K), *Ammobaculites kcnienensis* Sztejn (Fig. 15B), *Haplophragmoides concavus* (Chapman) (Fig. 15F), *H. cushmani* Loeblich & Tappan (Fig. 15C), *Protociona diffugiformis* Brady (Fig. 15D), and *Glomospirella gaultina* (Bethelin) (Fig. 15G) is characteristic for these sediments. They were mostly recorded in cored section from Gostynin IG 1 (Fig. 8, samples 5–8). Similar foraminiferal assemblages are characteristic of higher Berriasian siliciclastic shelf sediments in central Poland (Sztejn, 1968, 1990). The presence of agglutinated foraminifers of family Lituolidae, with abundant *Charentia sp.* (Fig. 15E) is characteristic of the Upper Berriasian strata in the southern part of the Carpathian Foredeep, near Dębica (the upper part of the marly-carbonate member of the Ropeycz Series). This assemblage includes also calcareous foraminifers of the genera: *Trocholina*, *Eoguttulina*, and *Plumularia*. Such assemblages were found in cored sections from Zagorzyce 7 (Fig. 11, samples 3, 4) and Wiewiórka 4 (Fig. 10, sample 2). Previous biostratigraphic studies of the Lower Cretaceous sediments in southeastern Poland (including the cored section from Stasiówka 1 in the Carpathian Foredeep) were limited to a few works (e.g., Geroch et al., 1972). Biostratigraphic studies in the Lublin region were done by Moryc and Waszniewska (1965) and Sztejn (1996). Biostratigraphic studies of the Lower Cretaceous deposits in the Carpathian Foredeep were also undertaken by Olszewska (1999, 2001), who studied microfauna in thin sections.

In central Poland, four characteristic foraminiferal assemblages have been distinguished in the Valanginian sediments attributed to the ostracod zone *Pseudoprotocythere aubersonensis* (Fig. 32). Impoverishment of the foraminiferal fauna and predominance of agglutinated foraminifers was observed in the Lower Valanginian strata, assigned to the *robusum* Zone. Near the top of the Lower Valanginian, in deposits bearing abundant bivalves and ferruginous concretions, the assemblage of microfauna is impoverished and their taxonomic composition indicates shallowing of the basin. At the base of the Lower Valanginian, developed as argillaceous-mudstone facies, an assemblage of agglutinated foraminifers with *Trophammina inflata*, *Haplophragmoides concavus*, and *Ammobaculites agglutinans* has been recorded. The assemblage is similar to those from the uppermost Berriasian. The first assemblage of calcareous benthic foraminifers appeared in the beds with ammonites of the genera *Neoconites* and *Karakassicheras*. It was named in the present study as the assemblage with *Epistomina caracolla*, *Lenticulina subalata*, and *Verruculinoides neocomiensis*. This assemblage was recorded in cored sections from: Gostynin IG 1 (Fig. 8, samples 11–13), Łowicz IG 1, and from Żychlin IG 3 (Fig. 9, sample 7). In the upper part of the Lower Valanginian the assemblages with *Glomospirella gaultina* and *Ammodiscus tenuissimus*, and with *Epistomina caracolla* and *Lenticulina subalata* have been found. They are also characteristic for the Upper Valanginian (the lowermost part of the ammoneite *verrucosum* Zone) (Fig. 32).

The Upper Valanginian deposits in central Poland contain abundant and highly diversified assemblages of foraminifers. The foraminiferal *Lenticulina eichenbergi* Zone was identified in the sediments of the uppermost part of *verrucosum* to *triptychoides* zones (Fig. 32). *Lenticulina eichenbergi* Bartenstein & Brand, which in the Tethyan Province marks the foraminiferal horizon *Lenticulina eichenbergi* (Moullade, 1984), has been accepted as the index species for this zone. The Upper Valanginian age of deposits at the Wąwał outcrop (the Tomaszów Trough) is indicated by the ammonites (Kutek et al., 1989; Ploch, 2002). The more abundant foraminifers were observed in the higher part of the Wąwał section, corresponding to the *polytomaus – crassus* ammonite Zone and to the upper part of the *triptychoides* Zone. These assemblages include many species of calcareous and agglutinated foraminifers, such as: *Epistomina*, *Lenticulina*, *Tristix*, *Cithara*, *Psilococrella*, *Pseudonodosaria*, *Frondicularia* and *Conorboides* (Fig. 16H–L; Fig. 17A–D, J). The amount of agglutinated forms relative to the calcareous ones, of which numerous are only those of genus *Epistomina*, increases in the upper part of the *triptychoides* Zone. Glauconite-rich sediments in the highest part of the Wąwał section do not contain microfauna. The foraminiferal assemblage of the *Lenticulina eichenbergi* Zone was described in cored section from the Gostynin IG 1 (Fig. 8, samples 14, 15; Fig. 17E, F) in the Warsaw Trough. In central Poland, conditions in the depositional basin changed during the latest Valanginian. Sandy mudstones with admixture of ferruginous oolites were laid down, indicating a stratigraphic condensation during the maximum flooding phase.

The foraminiferal assemblage with *Hechtiina praecentiqua*, *Protomarssonella humin*, and *Protomarssonella hechti* was recognized in the uppermost part of the Upper Valanginian, in the Warsaw Trough (Fig. 32). The index species and the other genera, such as *Protociona*, *Glomospirella*, *Ammodiscus* and *Bulbocaculites* were recognised in the cored section from the Gostynin IG 1 well (Fig. 8, sample 16) (Fig. 17G, H, I, K; Fig. 18A–D). Similar foraminiferal assemblages are characteristic for deposits assigned to the “Beds with *Dichotomites*” in the Boreal Province, e.g., in the Lower Saxony Basin (Mutterlose et al., 2000; Klein & Mutterlose, 2001), though the amount of agglutinated forms is there higher than in the Polish Basin. This is certainly due to the stronger influence of the Boreal Sea in the Lower Saxony Basin.

In the area situated southeastward to the Warsaw Trough, the Valanginian deposits are developed in siliciclastic-carbonate and carbonate facies of the Dębica Series (Zdanowski et al., 2001). These sediments were docu-
Fig. 15. A. *Rhizammina indivisa* Brady; B. *Ammobaculites keynensis* Szeijn; C. *Haplophragmoides cushmani* Loeblich & Tappan; D. *Procamina diffusiformis* Brady; E. *Charentia* sp.; F. *Haplophragmoides concavus* Chapman; G. *Glomospirilla gaultana* (Berthelin); H. *Reticuloides* sp.; I. *Trochammina inflata* Loeblich & Tappan; J. fragment of charophytes; K. *Trochammina inflata* Loeblich & Tappan.

A-D, F-J, K: Gostynin IG-1 (1008.2 m); E: Wiewiórka 4 (1457.5 m), Upper Berriasian; J: Zagorzyce 7 (2780 m), Lower Berriasian. Scale bar: 100 μm.
Fig. 16. A, B. Trocholina molesta Gorbatchik; C, D. Trocholina hurlini Gorbatchik; E. Astaculus cf. proprius Kuznetsova; F. Eoguttulina witoldensis Sztajn; G. Citharina parvicostrata (Reuss); H, I. Conorboides hofkeri Bartenstein & Brand; J. Lenticulina nodosa (Reuss); K. Tritix acutangula (Reuss); L. Lenticulina eichenbergi Bartenstein & Brand. A, B: Wiewiórka 4 (1451.6 m), Lower Valanginian; C, D, F, G: Zagorzyce 7 (2747.8 m), Lower Valanginian; H-L: Wąwal, Upper Valanginian. Scale bar – 100 μm
BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY OF THE LOWER CRETACEOUS

Fig. 17. A. Citharina seitzi Bartenstein & Brand; B. Psilocithurella recta (Roemer); C. Lenticulina saxonica Bartenstein & Brand; D. Pseudonodosaria humilis (Roemer); E. Spirillina minima Schacko; F. Astacolus cephalotes (Reuss); G. Hechtina pracontigua Bartenstein & Brand; H. Protonasornella hechti Diensi & Massari; I. Protonasornella kummi (Zedler); J. Frondicularia hastata Roemer; K. Protonasornella hechti Diensi & Massari. A-D: Wąwal clay-pit. Upper Valanginian; E-H, J-K: Gostynin IG 1 (934.2–942.0 m). Upper Valanginian. Scale bar = 100 μm
Fig. 19. A, B. Hedbergella infracretacea (Glæssner); C, D. Gavelinella harzemiana Bettenstaedt; E, F. Gavelinella sp. 1; G. Meandrospira waschtensis Loeblich & Tappan; H. Meandrospira bancilai Neagu; I. Falsogaudryinella scherlocki Bettenstaedt; J. Verneuilnoides subtiliformis Bartenstein; K. Praedorothia praooxyconca (Moullade); L. Marginulina pyramidalis (Koch); M. Tristix acutangula (Reuss); N. Lagena globosa Montagu. A-N: Białobrzegi IG 1 (948-953 m), Lower Aptian. Scale bar = 100 μm.
mented by foraminiferal microfauna in the cored sections from Zagorzyce 7 and Wiewiórka 4. The Lower Valanginian carbonate deposits of the Dębica Series contain rich foraminiferal assemblages with *Trocholina*, characteristic for the carbonate facies of the northern Tethys shelf (Kuznetzova & Gorbatchik, 1985). The most numerous foraminifers in this sediment are: *Trocholina burlini* Gorbatchik (Fig. 16C, D), *T. mctica* Gorbatchik (Fig. 16A, B), *Astartoculina cf. proprius* Kuznetzova (Fig. 16 E), *Euguttilina witoldensis* Sztejn (Fig. 16 F), and *Citharina paucicostata* (Reuss) (Fig. 16G). The foraminiferal species mentioned above and the others of genera: *Trocholina, Lenticulina, Saracenaria, Vaginulinopsis, Miliospereilla, Planularia, Citharina, Discorbus,* and *Spiruilla* were found in cores from Wiewiórka 4 (Fig. 10, samples 3–7) and from Zagorzyce 7 (Fig. 11, samples 5–8). The Late Valanginian (and probably Early Hauterivian) sediments of the Dębica Series are documented by the appearance of the foraminiferal species: *Epistomina caracolla* (Roemer) and *Lenticulina nodosa* Reuss in cored sections from Zagorzyce 7 (Fig. 11, samples 9–11).

The Hauterivian sediments in the Warsaw Trough have scarce micropalaeontological evidence. In the Lower Hauterivian sequences of sandy mudstones and sandstones, of the *radius* ammonite Zone (e.g., Łowicz IG 1 section), only impoverished assemblage of lenticulinds, epistominds and agglutinated foraminifers were recovered. In the cored section from Życzlin IG 3, the Upper Hauterivian mudstones attributed to the *gottschei* ammonite Zone, contain scarce microfauna, including: *Epistomina ornata* (Roemer), *E. caracolla* (Roemer), *Lenticulina subangulata* (Reuss), and *Citharina cf. acuminata* (Reuss) (Fig. 9, sample 9). The Upper Hauterivian foraminiferal assemblages including: *Lagena hauteriviana cylindrica, Citharina orthonota,* and *C. sparsicostata* (Fig. 32) were also identified in the cored section from Gostynin IG 1. The index species were accompanied by the other species of the genera: *Lagena* (Fig. 18E), *Citharina* (Fig. 18F), *Epistomina, and La- marczenia* (Fig. 8, sample 17). Similar microfaunal assemblages have been described from the Upper Hauterivian and lowermost Barremian deposits in the Boreal Province, in northwestern Germany and England (Bartenstein et al., 1991).

Southeastwards from the Warsaw Trough, carbonate facies are attributed to the Cieszanów Formation of the Hauterivian age (e.g., Narol IG 1, Narol IG 2; Figs 39, 42) (Marek et al., 1997). The foraminiferal assemblages recovered in these deposits indicate the Late Hauterivian – earliest Barremian age (Fig. 12, samples 1–4). It is suggested by the presence of *Buccicrenata condesa* Dulub (Fig. 18G, H), *Choffatella decipiens* Schlumberger, *Lenticulina hiermanni* Bettenstead, *Trocholina pauciglandulata* Moullade, and *Praedorothia* cf. *praexoxyona*, that are reported most frequently from the Upper Hauterivian through Lower Aptian deposits of the Boreal and Tethyan Realms (Holbourn & Kaminski, 1997). These deposits were previously attributed to the Upper Valanginian and Lower Hauterivian (Marek et al., 1989; Sztejn, 1996).

Sedimentary series of the higher part of Lower Cretaceous (Barremian, Aptian) in the Warsaw Trough, including mainly coarse-grained siliciclastic deposits, makes a part of the Mogilno Formation (Marek et al., 1989). There were no microfossils found in these series (Gostynin IG 1, Życzlin IG 3, Łowicz IG 1). In southeastern Poland, the siliciclastic facies are replaced by elastic-carbonate and carbonate deposits. Finding of the *Late Barremian–Early Aptian* microfauna, described in this paper as the assemblage with *Gavelinella barremiana* and *Hedbergella infracretacea* (Fig. 32), makes an important part of this study. The assemblages were recorded in deposits of the Białobrzegi Formation, in the cored section from Białobrzegi IG 1 (Fig. 13, samples 2–8). These sediments contain a very rich assemblage of microfauna with the most important: *Gavelinella barremiana* Bettenstead (Fig. 19C, D), *Gyroidinidae aff. infracretacea* Morozova, *Hedbergella infracretacea* (Glaessner) (Fig. 19A, B), *Meandrospira washtienensis* Loeblich & Tappan (Fig. 19G), *M. bancilai* Neagu (Fig. 19H), *Praedorothia* cf. *praexoxyona* (Moullade), and *Falsogaudryinella scherlocki* Bettenstead (Fig. 19I). They are also accompanied by numerous foraminifers of the genera: *Epistomina* (Fig. 18L, M), *Lagena* (Fig. 19N), *Lenticulina* (Fig. 18K), *Marginulina* (Fig. 19L), *Protomarssonella, Spiruilla, Tristix* (Fig. 19M), *Trocholina* (Fig. 18J, J), and *Ver­ neuilinoidea* (Fig. 19J). The species described in the cores from Białobrzegi IG 1 are known from the Barremian and Aptian strata. The foraminiferal genus *Gyroidinidae* was found to occur beginning from the Aptian (Holbourn & Kaminski, 1997; Riegraf & Luterbacher, 1989; Moullade, 1984). Its presence suggests that the age of the Białobrzegi Formation is Late Barremian through Early Aptian, rather than Late Valanginian through Hauterivian, as it was hitherto assumed (Marek et al., 1989).

NANNOFossil BIOSTRATIGRAPHY

Some Lower Cretaceous marine successions within central and southeastern Poland contain abundant and well preserved assemblages of calcareous nannoplankton. However, up to now, nannofossils have not been used as a stratigraphic tool in reference to these sedimentary series, except one section from the Warsaw Trough. The analysis of nannofloral assemblages, found in some samples from cored section from Korabiewice PIG 1 (Fig. 37), has allowed to constrain a stratigraphic position of the dark-grey and poorly fossiliferous, marly shales (Gaździcka, 1993).

Based on nannofossil data, this succession was attributed to the Upper Hauterivian, corresponding to the ammonite *gottschei* Zone. For the purpose of this study nannofossil assemblages of cored sections from twelve wells in central and southeastern Poland were examined.

To date, many proposals of nannoplankton zonation schemes have been presented for the Lower Cretaceous (e.g., Roth, 1973; Thierstein, 1976; Taylor, 1982; Jakubowski, 1987). The zonation established by Sissingh (1977) and modified by Perch-Nielsen (1979, 1985), known as a standard nannofossil zonation, is the most commonly used one for the Lower Cretaceous strata. On the other hand, the stratigraphic zonation scheme for the Lower Cretaceous of the Boreal Realm is the most refined one (Bown et al., 1999). The specific nature of nannofossil assemblages from the Lower Cretaceous of the Polish Lowlands allows for ex-
clusive use of the zonation schemes neither from Tethys nor from the Boreal Province. The nannofossil assemblages include both tethyan and the boreal taxa, and the proportion of both palaeobiogeographic elements changes in the studied sections. But there are still neither continual data of the tethyan nannofossil succession nor of the boreal one. This unique character of nannoflora results from the palaeogeographic position of sedimentary basins, situated between these two major provinces. However, a taxonomic composition of the nannofossil assemblages shows the closest affinities to those from the Lower Saxony Basin (see Mutterlose, 1991). A content of the tethyan species is still higher than in coeval deposits from Germany. Also lack or scarcity of the boreal taxa in some stratigraphic intervals is symptomatic. Nevertheless, the zonation scheme established in German Basin by Mutterlose (1991, 1992) is the most useful for stratigraphy of the Lower Cretaceous strata from the Polish Lowlands, and it has been adapted with some modifications for the purpose of this study (Fig. 20). It also enables a correlation of depositional sequences from these two neighbouring sedimentary basins.

The succession of nannofossil assemblages observed in the studied sections has allowed for distinguishing of biostratigraphic zones or only their lower or upper boundaries, that correspond to the first (FO) or to the last occurrences (LO) of the marker species. This results from both continuous coring and sedimentary gaps in the studied sections. Differences between the successions of nannofossil taxa from the Polish and the Lower Saxony basins have been observed mainly within the following intervals: 1) the Berriasian–Lower Valanginian, for which no plankont zones have been distinguished in the German Basin, 2) the Upper Hauterivian, and 3) the Lower Aptian. The Late Berriasian assemblage includes some tethyan as well as cosmopolitan taxa, what has enabled identification of Thierstein’s, *Retacapsa angustiforata* Zone. Nannofloral assemblage recorded in the Upper Hauterivian consists, in turn, mainly of the boreal taxa. In the present study, the first Upper Hauterivian zone is established using the FO of *Perissocyclus plethotchetus* (Wind et Cepek), as indicative of its lower boundary. In the Lower Aptian, the Mediterranean species were dominant again and thus they were used as zonal markers. The nannofossil zonation scheme, proposed for the Lower Cretaceous in Polish Lowlands includes thirteen zones. They are labelled PN (from: *Polish Nannoplankton Zones*) and given successive numbers (Figs 20–25). The zonation scheme is summarized in Fig. 20. Selected species of coccoliths, characteristic of the early Cretaceous assemblages are shown in Figs 26–31.

Proposed zonation scheme

PN 1 Retacapsa angustiforata

Definition: Interval between the FO of *Retacapsa angustiforata* and the FO of *Zeugrhabdotus diplogrammus*.

Author: Thierstein (1971) emend. Gaździcka (this paper).

Stratigraphic range: Upper Berriasian and the lowermost Valanginian; the zone corresponds to the tethyan ammonite *boissieri* Zone, and possibly to the lowermost part of the Lower Valanginian *petransiens* Zone.

Remarks: In the Tethyan Realm, *R. angustiforata* appears in the lowermost Middle Berriasian, corresponding to lower part of the ammonite *occitana* Zone, or even in the Lower Berriasian (Bergen, 1994). In the Boreal Realm, it has been recorded only in the Upper Ryazanian, corresponding to the uppermost part of the Middle and to the Upper Berriasian (Bown et al., 1999). The difference may be caused by the lack of nannofossil-bearing facies, older than the Upper Berriasian, or a regional unconformity between the Upper Jurassic and the Lower Cretaceous in the North Sea. In the Polish Lowlands, *R. angustiforata* (Fig. 29C) appears in the lowermost part of the Upper Berriasian. It has been recorded together with the first Berriasian ammonite assemblages. These events are also associated by a change of microfaunal assemblages, and they are correlated with the lower boundary of the ostracod zone *C. vidrana* (Fig. 32). PN 1 has been recognised in the cored sections from Gostynin IG 1 (Fig. 22) and Żychlin IG 3, in sedimentary succession distinguished as the Rogożno Formation.

PN 2 Zeugrhabdotus diplogrammus

Definition: Interval between the FO of *Zeugrhabdotus diplogrammus* and the appearance of poorly differentiated assemblages, comprising mainly *Watznauera barnesae*.

Author: Gaździcka (this paper).

Stratigraphic range: Lowermost Valanginian, corresponding to the lower part of the tethyan ammonite *petransiens* Zone and to the boreal zones *robustum* and *heteropleurum*.

Remarks: In the studied sequences, *Z. diplogrammus* appears together with some tethyan ammonites of the genus *Neocomites* and *Neohiploceras* that are characteristic for the lowermost Valanginian (cf. Fig. 2 and Fig. 21). This is probably the oldest known occurrence of this species. According to Bown et al. (1999), the FO of *Z. diplogrammus* in the Boreal Province is in the uppermost part of the Lower Valanginian. The appearance of this species in Poland, in the *petransiens* Zone, indicates its tethyan provenance. *Zeugrhabdotus diplogrammus* is accompanied by other tethyan coccoliths: *Cyclagelosphaera margerelii* (Fig. 26G), *Micrantholithus obtusus* (Fig. 26K) and *Watznauera barnesae* (Fig. 26I). The nannofossil assemblages in PN 2 are also more taxonomically diversified than the Berriasian ones. The *Z. diplogrammus* Zone, comprising the lowermost Lower Valanginian, has been recognised in cored section from Łowicz IG 1, in the uppermost part of the Rogożno Formation (Fig. 21). The stratigraphic position of this formation has hitherto been determined as the “Ryazanian”.

PN 3 Watznauera barnesae

Definition: Interval between the appearances of a poorly differentiated assemblages, dominated by coccoliths *Watznauera barnesae* and the FO of *Eiffellithus striatus*.

Author: Gaździcka (this paper).

Stratigraphic range: Upper part of the Lower Valanginian,
<table>
<thead>
<tr>
<th>STAGE</th>
<th>NANNOFOSIL EVENTS</th>
<th>NANNOFOSIL ZONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albian</td>
<td>E. turriseiffeli</td>
<td>CC9, BC 27 Eiffellithus turriseiffeli</td>
</tr>
<tr>
<td>Aptian</td>
<td>Nannoconus spp.</td>
<td>PN 13 Eprolithus floralis</td>
</tr>
<tr>
<td>Barr.</td>
<td>E. florasli</td>
<td>PN 12 Farhana varolii</td>
</tr>
<tr>
<td></td>
<td>F. varolli</td>
<td>PN 11 Broininsona matalosa</td>
</tr>
<tr>
<td></td>
<td>B. matalosa</td>
<td>PN 10 Nannoconus abundans</td>
</tr>
<tr>
<td>Hauterivian</td>
<td>T. septentrionalis</td>
<td>PN 9 Tegumentum octiformis</td>
</tr>
<tr>
<td></td>
<td>P. plethotretus</td>
<td>PN 8 Tegulalithus septentrionalis</td>
</tr>
<tr>
<td></td>
<td>E. antiquus</td>
<td>PN 7 Perissocyclus plethotretus</td>
</tr>
<tr>
<td></td>
<td>C. rothii</td>
<td>PN 6 Eprolithus antiquus</td>
</tr>
<tr>
<td></td>
<td>A. dietzmannii</td>
<td>PN 5 Conusphaera rothii</td>
</tr>
<tr>
<td></td>
<td>E. striatus</td>
<td>PN 4 Eiffellithus striatus</td>
</tr>
<tr>
<td></td>
<td>E. windii</td>
<td>PN 3 Zatznaueria barnesae</td>
</tr>
<tr>
<td></td>
<td>impoverished assemblage with W. barnesae predominance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z. diplogammus</td>
<td>PN 2 Zeghrobdotus diplogammus</td>
</tr>
<tr>
<td></td>
<td>R. asper, R. surirella</td>
<td>PN 1 Retacapsa angustiforata</td>
</tr>
</tbody>
</table>

Fig. 20. Nannoplankton events and biostratigraphy of the Lower Cretaceous in central and SE Poland
corresponding to the uppermost part of tethyan petrains Zone and to the campylotoxus Zone. It may be also correlated with the boreal Polyptychites spp. Zone.

Remarks: A gradual impoverishment of calcareous nannoplankton assemblages in respect of taxonomical diversification is noticeable since the upper part of the ammonite petrains Zone, together with the appearance of the first boreal ammonites. Sedimentary sequences with ammonites of the genus Polyptychites ("Beds with Polyptychites"; Marek, 1997) contain nearly monospecific coccolith assemblages with predominant Watznaueria barnesae. The PN 3 Watznaueria barnesae Zone, corresponding to the upper part of the Lower Valanginian, was recognized both in the sections from the Warsaw Trough (Łowicz IG 1, Fig. 21; Gostynin IG 1, Fig. 22; and Żychlin IG 3), and from the Tomaszów Trough (Wąwał clay-pit). It corresponds to the lower part of the Bodzanów Formation.

PN 4 *Eiffellithus striatus*

Definition: Interval between the FO of *Eiffellithus striatus* and the FO of Conusphaera rothii.

Author: Mutterlose (1991).

Stratigraphic range: Upper Valanginian, interval corresponding to the boreal ammonite zone Dichotomites spp., comprising five zones established in the Lower Saxony Basin: hollwedensis, polytomus, crassus, triptychoïdes, and bidichotomites (Fig. 32).
Fig. 22. Distribution chart of calcareous nanofossils in the Lower Cretaceous deposits of the Gostynin IG 1: for lithological description – see Fig. 2
Fig. 23. Distribution chart of calcareous nannofossils in the Lower Cretaceous deposits of the Gostynin IG 4; for lithological description – see Fig. 2

<table>
<thead>
<tr>
<th>Stage</th>
<th>Nanofossil zones</th>
<th>Depth</th>
<th>Lithology</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valanginian</td>
<td>L U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PN 6</td>
<td>1380</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PN 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PN 4</td>
<td>1400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 24. Distribution chart of calcareous nannofossils in the Lower Cretaceous deposits of the Białobrzegi IG 1; for lithological description – see Fig. 2

<table>
<thead>
<tr>
<th>Stage</th>
<th>Nanofossil zones</th>
<th>Depth</th>
<th>Lithology</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>920</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aptian</td>
<td>Upper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PN 13</td>
<td>940</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>950</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrem.</td>
<td>Lower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PN 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PN 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PN 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PN 9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lack of calcareous nannofossils
PN 5 Conusphaera rothii

Definition: Interval between the FO of *Conusphaera rothii* and the FO of *Eprolithus antiquus.*

Author: Mutterlose (1991).

Stratigraphic range: Uppermost Valanginian–lowermost Hauterivian. The interval corresponding to the Valanginian ammonite *tuberculata* Zone and the Lower Hauterivian *amblygonium* Zone.

Remarks: In the Tethyan Realm, *C. rothii* appears probably earlier, in the uppermost Tithonian (Bown et al., 1999). In Poland, however, similarly as in the German Basin and in the Boreal Realm, the FO of this species was observed only in the uppermost Valanginian (Gostynin IG 4; Fig. 23). Also other tethyan species, such as *Lithraphidites carniolensis* (Fig. 28G), *Micrantholithus obtusus* (Fig. 28H), *Nannoconus cornuta* and *Nannoconus globulus* are frequent in this zone. *Eiffellithus striatus* is still present. The lower part of the Włocławek Formation, developed in the studied area as sandy mudstones with intercalation of dark argillaceous shales, was attributed to the zone PN 5 *Conusphaera rothii.* This zone has been identified in the cored sections from Gostynin IG 4 (Fig. 23) and Zagorzyce 7 in the Carpathian Foredeep.

PN 6 Eprolithus antiquus

Definition: Interval between the FO of *Eprolithus antiquus* and the FO of *Perissocycclus plethotretus.*

Author: Crux (1989), emend. Gaździcka (this paper).

Stratigraphic range: The higher part of the Lower Hauterivian, corresponding to the Boreal *noricum* and regale ammonite zones and the lowermost part of the Upper Hauterivian, comprising the lower part of the *Aegocrioceras* sp. Zone.

Remarks: *E. antiquus* belongs to the boreal species, absent in the Tethyan Province. In England, it appears in the *amblygonium* Zone (lowermost Hauterivian). In the studied sequences, this species appears similarly as in Germany, in the upper part of the Lower Hauterivian, corresponding probably to the *noricum* Zone (Figs 21, 23). However, the definition of the zone proposed by Mutterlose (1991), who accepts the LO of this species as a stratigraphically significant event, is difficult to accept. Because of the scarce presence of *E. antiquus* in the studied sequences, different event has been proposed as a marker of the upper boundary of this zone. It corresponds to the FO of *Perissocycclus plethotretus* (Fig. 21). This zone has been distinguished in the cored sections from Łowicz IG 1 (Fig. 21) and Gostynin IG 4 (Fig. 23), in sedimentary successions of the lower part of the Włocławek Formation.

PN 7 Perissocycclus plethotretus

Definition: Interval between the FO of *Perissocycclus plethotretus* and the FO of *Tegulalitus septentrionalis.*
PN 8 Tegulalithus septentrionalis

Definition: Interval corresponding to the total range of *Tegulalithus septentrionalis*

Author: Crux (1989).

Stratigraphic range: Upper Hauterivian, corresponding to the higher part of the boreal *staffi* ammonite Zone and the lowermost part of the *gottschei* Zone.

Remarks: Similarly as in the German Basin, the nannoplankton assemblages include abundant *Watznaueria baresiae* and *Rhagodiscus asper*. *Cruciolipsis cavillieri* is present only in the lower part of this zone; *Speeotonia colligata* has not been found. The PN 8 *Tegulalithus septentrionalis* Zone was recognized in the cored sections from Łowicz IG 1 (Fig. 21), and Gostynin IG 1 (Fig. 22). It includes the upper part of the Wloclawek Formation.

PN 9 Tegumentum octiformis

Definition: Interval between the LO of *Tegulalithus septentrionalis* and the FO of *Nannoconus abundans*.

Stratigraphic range: Uppermost Hauterivian, lowermost Barremian.

Remarks: In the Boreal Realm as well as in Germany, *T. septentrionalis* occurs for the last time in the upper part of the *gottschei* ammonite zone. PN 9 comprises the uppermost part of the *gottschei* Zone and the *discofalcatus* Zone, established in Germany, including the uppermost Hauterivian and the lowermost Barremian. The upper part of this zone was identified in cored section from Białobrzegi IG 1 (Fig. 24). Nannofossil assemblages are poorly diversified. Some tethyan taxa (e.g., *Calcicalathina oblongata* and nannoconids) were recorded in this interval.

PN 10 Nannoconus abundans

Definition: Interval between the FO of *Nannoconus abundans* and the FO of *Broinsonia matalosa*.

Author: Crux (1989) emend. Gaździcka (this paper).

Stratigraphic range: Lower and Upper Barremian (without the uppermost part).

Remarks: *N. abundans*, belonging to the boreal taxa, is not abundant in the studied samples. It was found in the cored sections from Białobrzegi IG 1 (Fig. 24). This is the southernmost finding of this species in Europe.

PN 11 Broinsonia matalosa

Definition: Interval between the FO of *Broinsonia matalosa* and the FO of *Farhania varolii*.

Author: Mutterlose (1991), emend. Gaździcka (this paper).

Stratigraphic range: Uppermost Barremian, lowermost Aptian, corresponding to the Boreal (German) Upper Barremian *stolleyi* and *bidentatum* ammonite zones and the Lower Aptian *temnicostatus* Zone, as well as the lower part of *deshayesi* Zone (Fig. 32).

Remarks: In the Upper Barremian of the German Basin, Mutterlose (1991) emphasized the occurrence of scarce and poorly diversified calcareous nannoplankton assemblages. Samples taken from the cored section from Białobrzegi IG 1 provided the abundant nannofossil assemblages, with a large amount of the tethyan species (including nannoconids). PN 11 was distinguished in the Białobrzegi IG 1 section (Fig. 24).

PN 12 Farhania varolii

Definition: Interval between the FO of *Farhania varolii* and the FO of *Eprolithus floralis*.

Author: Rutledge and Bown, emend. Gaździcka (this paper).

Stratigraphic range: Lower Aptian, corresponding to the middle and the upper parts of the *deshayesi* ammonite zone, distinguished in the German Basin.

Remarks: *F. varolii*, belonging to the boreal species, is also known from the German Basin, where it occurs in the Lower and Upper Aptian. PN 12 was also distinguished in the section of Białobrzegi IG 1 (Fig. 24).

PN 13 Eprolithus floralis

Definition: Interval between the FO of *Eprolithus floralis* and the horizon of abundant occurrence of *Nannoconus*. This is the highest part of the studied succession. There appear also some new species like e.g., *Nannoconus truitti* and *Nannoconus vocontiensis*. The abundant nannoconids were also found in the cored section from Bąkowa IG 1, at a depth of 942.3 m (Fig. 24). The marker species of PN 13 is accompanied by: *Broinsonia matalosa*, *Farhania varolii*, *Rhagodiscus asper*, and representatives of the genus *Nannoconus*. The frequency of nannoconids clearly increases in the highest part of the studied succession. There appear also some new species like e.g., *Nannoconus truitti* and *Nannoconus vocontiensis*. The abundant nannoconids were also found in the cored section from Bąkowa IG 1, at a depth of 942.3 m (Fig. 25). Mutterlose (1991) accepted this horizon as the upper boundary of the PN 13 Zone. In the lower Saxonian Basin, the horizon of abundant occurrence of the genus *Nannoconus* is correlated with the boundary between the Lower and the Upper Aptian.
Fig. 26. A. *Bipodorhabdus roegli* Thierstein, proximal view, ×10,000; B. *Bipodorhabdus roegli* Thierstein, distal view, ×12,500; C. *Staurolithites stradneri* Rod et al., proximal view, ×12,500; D. *Axopodorhabdus dietzmannii* (Reinhardt), proximal view, ×10,000; E. *Polypodorhabdus madingleyensis* Black, proximal view, ×10,000; F. *Cretarhabdus conicus* Bramlette et Martini, distal view, ×10,000; G. *Cyclogelosphera margerelii* Noël, distal view, ×12,500; H. *Watznaueria ovata* Bukry, proximal view, ×12,500; I. *Watznaueria barnesae* (Black), distal view, ×7,500; J. *Rotelapillus laffitei* (Noël), proximal view, ×10,000; K. *Micrantholithus obtusus* Stradner, ×6,000; L. *Nannoconus steinmannii minor* Deres et Achéritguy, ×7,500. A-L: Wąwał clay-pit, Upper Valanginian, *verrucosum* Zone; calcareous nannoplankton Zone: PN 4 *Eiffellithus striatus*
BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY OF THE LOWER CRETACEOUS

Fig. 27. A. Zeugrhabdotus erectus Deflandre, distal view, ×6.500; B. Staurolithites quadriarcula (Noël), proximal view, ×11.200; C. Sollasites horticus (Stradner et al.), distal view, ×9.200; D. Axopodorhabdus dietzmannii (Reinhardt), distal view, ×4.250; E. Cretarhabdus conicus Bramlette et Martini, distal view, ×7.000; F. Polyopodorhabdus madingleyensis Black, distal view, ×7.000; G. Speetonia colligata Black, proximal view, ×4.250; H. Watznaueria barnesae (Black), proximal view, ×6.700; I. ?Eprolithus sp., ×4.500; J. Stradnerlithus geometricus (Górka), ×11.250; K. Stradnerlithus rhombicus (Stradner et Adamiker), ×11.250; L. Truncatoscaphus senarius (Wind et Wise), ×11.250. A–L: Gostynin IG I (945.5 m), Upper Valanginian, tripychoides Zone; calcareous nannoplankton Zone: PN 4 Eiffellitina striata
Fig. 28. A. *Tetrapoorhabdus coptensis* Black, distal view, x6.000; B. *Retacapsa crenulata* (Bramlette et Martini), distal view, x6.500; C. *Retacapsa surirella* (Deflandre et Fert), proximal view, x7.500; D. *Rotelopilus laffitei* (Noël), proximal view, x15.000; E. *Cycl格losphaera margerelli* Noël, proximal view, x7.500; F. *Watznaueria barnesae* (Black), distal view, x7.500; G. *Lithraphidites carniolensis* Deflandre, x6.000; H. *Micrantholithus obtusus* Stradner, proximal view, x7.500; I. *Nannoconus circularis* Dercet et Achéritéguy, x7.500; J. *Triquetrooorhabdulus shetlandensis* Perch-Nielsen, x6.000; K. *Triquetrooorhabdulus shetlandensis* Perch-Nielsen, x3.000; L. *Ceratolithodes* sp. A, x5.000. A-L: Łowicz IG 1 (522.5 m), Lower Hauterivian, radiatus Zone; calcareous nannoplankton Zone: NP 6 *Eprolithus antiquus*
BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY OF THE LOWER CRETACEOUS

Fig. 29. A. Zeugrichhodontus erectus (Deflandre), distal view, \(\times 8,000 \); B. Percivalia imperfecta Black, proximal view, \(\times 7,000 \); C. Retocapsa angustifora Black, distal view, \(\times 8,000 \); D. Rotellapillus luffitei (Noël), proximal view, \(\times 11,250 \); E. Watznaueria barnesae (Black), proximal view, \(\times 6,000 \); F. Watznaueria barnesae (Black), distal view, \(\times 7,500 \); G. Watznaueria fossocincta (Black), distal view, \(\times 7,600 \); H. Watznaueria britannica (Stradner), distal view, \(\times 7,500 \); I. Watznaueria barnesae (Black), kokkosfera, \(\times 5,000 \); J. Axopodorrhaphus albianus (Black), distal view, \(\times 9,300 \); K. Crucithespectrum hayi (Black), distal view, \(\times 7,500 \); L. Tetrapodorrhaphus coptensis Black, distal view, \(\times 7,500 \). A-F: Żychlin IG 3 (840.5 m), Upper Hauterivian, calcareous nannoplankton Zone: PN 7 Perissocyclus plethotretus; G-L: Tuszyn 5 (1072 m), Lower Aptian (?); J-K: Bąkowa IG 1 (941 m), Upper Albian, calcareous nannoplankton Zone: CC 9 Eiffelithus tuirelfei.
Fig. 30. A. *Staurolithes stradneri* (Rod et al.), distal view, ×9.500; B. *Staurolithes stradneri* (Rod et al.), proximal view, ×9.000; C. *Rhododiscus* sp., ×4.500; D. *Diaccomatolithus lehmonii* Noël, proximal view, ×7.500; E. *Watznaueria ovata* Bukry, proximal view, ×7.500; F. *Watznaueria barnesae* (Black), distal view, ×13.000; G. *Perissocyclus tayloriae* Crux, distal view, ×17.500; H. *Rolelapillus laffitei* (Noël), proximal view, ×22.000; I. *Eprolithus floralis* (Stradner), ×9.000; J. *Nannoconus pseudoseptentrionalis* Rutlege et Bown, ×8.500; K. *Nannoconus pseudoseptentrionalis* Rutlege et Bown, ×7.650; L. *Pithonella loeblichii* Bolli, ×4.250. A–L: Białobrzegi IG 1 (949.5 m). Lower Aptian, calcareous nannoplankton Zone: PN 13 *Eprolithus floralis*
Fig. 31. A. Zeugrhaditus diplogrammus (Deflandre), distal view, x5,000; B. Tranolithus orionatus (Reinhardt), distal view, x5,100; C. Tranolithus orionatus (Reinhardt), proximal view, x5,000; D. Rhagodiscus achylostaurion (Hill), distal view, x7,500; E. Watznaueria ovata Bukry, proximal view, x5,000; F. Eiffellithus turriifelli (Deflandre), proximal view, x5,000; G. Prediscosphaera columnata (Stover), proximal view, x7,500; H. Prediscosphaera columnata (Stover), proximal view, x7,000; I. Epivolithus florialis (Stradner), x5,000; J. Biscutum ignotum (Górka), proximal view, x6,000; K. Watznaueria barnesae (Black), proximal view, x5,000; L. Watznaueria barnesae (Black), distal view, x5,000. A, B, D, H, K, L: Annopol quarry. Upper Albian, dispar Zone, calcareous nannoplankton Zone: CC 9 Eiffellithus turriifelli; C, G, J: Bąkowa IG 1, (929.7 m), Upper Albian, dispar Zone. calcareous nannoplankton Zone: CC 9 Eiffellithus turriifelli
<table>
<thead>
<tr>
<th>Age (m.y.)</th>
<th>Ammonite zones</th>
<th>"Beds" with ammonites</th>
<th>Ammonite zones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tethyan (German)</td>
<td>Extra-Carpathian Poland</td>
<td>Extra-Carpathian Poland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Marek, 1997; Marek & Shulgina 1996)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aptian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>jacobi</td>
<td>jacobi</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>nolani</td>
<td>nolani</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>melchioris</td>
<td>melchioris</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subnodosocostatum</td>
<td>subnodosocostatum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>furscata</td>
<td>furscata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>deshayesi</td>
<td>deshayesi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weissi</td>
<td>weissi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oglanienisis</td>
<td>oglanienisis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>waagenoides</td>
<td>waagenoides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sarasini</td>
<td>sarasini</td>
<td></td>
</tr>
<tr>
<td></td>
<td>giraudi</td>
<td>giraudi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>referdianus</td>
<td>referdianus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sartousiana</td>
<td>sartousiana</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vandenheckii</td>
<td>vandenheckii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>darsi</td>
<td>darsi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>compressissima</td>
<td>compressissima</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pulchella</td>
<td>pulchella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nicklesi</td>
<td>nicklesi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hugi</td>
<td>hugi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ohmi</td>
<td>ohmi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>balenaris</td>
<td>balenaris</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ligatus</td>
<td>ligatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sayni</td>
<td>sayni</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nodosopicatum</td>
<td>nodosopicatum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>loryi</td>
<td>loryi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>radiatus</td>
<td>radiatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'asteria' fauna</td>
<td>'asteria' fauna</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuberculata</td>
<td>tuberculata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bidichotomites</td>
<td>bidichotomites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tripychoides</td>
<td>tripychoides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>crassus</td>
<td>crassus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>verrucosum</td>
<td>verrucosum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>polymus</td>
<td>polymus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hollwedensis</td>
<td>hollwedensis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sphaeroidalis</td>
<td>sphaeroidalis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>clarkei</td>
<td>clarkei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>multicostatus</td>
<td>multicostatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pavlowi</td>
<td>pavlowi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>involutum</td>
<td>involutum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>heteropleurum</td>
<td>heteropleurum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>robustum</td>
<td>robustum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"weald"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Surites, Euthyniceras and Neocosmoceras"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Riasanites, Himalayites and Picteteceras"</td>
<td></td>
</tr>
<tr>
<td>Barremian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauterivian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valanginian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berriasian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 32. A comparison of Lower Cretaceous ammonite, foraminifer, ostracod and nannofossil zonations; stratigraphic scheme proposed for the studied sequences. Ammonite zonation after Kemper et al. (1981), Bown et al. (1999), Kutck et al. (1989) and Hoedemaeker et al.
Ostracod zones
(used in this paper by Smoleń)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Characteristic foraminiferal assemblages</th>
<th>Nannoplankton zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kubiatowicz, 1983)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN 13</td>
<td>Eprolithus floralis</td>
<td>PN 12 Farhania varolii</td>
</tr>
<tr>
<td>PN 11</td>
<td>Broinsonia matalosa</td>
<td>PN 10 Nannoconus abundans</td>
</tr>
<tr>
<td>PN 9</td>
<td>Tegumentum octiformis</td>
<td>PN 8 Tegulalithus septentrionalis</td>
</tr>
<tr>
<td>PN 7</td>
<td>Perissocyclus pleothotretus</td>
<td>PN 6 Eprolithus antiquus</td>
</tr>
<tr>
<td>PN 5</td>
<td>Comusphaera rothii</td>
<td>PN 4 Eiffellithus striatus</td>
</tr>
<tr>
<td>PN 3</td>
<td>Watznaueria barnesae</td>
<td>PN 2 Zeugrhabdotus diplogrammus</td>
</tr>
<tr>
<td>PN 2</td>
<td>Zeugrhabdotus diplogrammus</td>
<td>PN 1 Retacapsa angustiforata</td>
</tr>
<tr>
<td>PN 1</td>
<td>Retacapsa angustiforata</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>C. vidrana</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C. granulosa</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C. dunker</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2003); ammonite zones established in this paper – in grey
In the Białobrzegi IG 1 section, the arenaceous series overlying the silty succession, with nanofossils of the zone NP13 *Eprolithus floris*, is correlated with the Mogilno Formation distinguished in the Polish Lowlands (Marek, 1997). These sandy successions usually do not contain any marine fossils that would permit determination of their stratigraphic position. This series is present in most studied sections within the Warsaw Trough (Fig. 43). Calcareous nannoplankton assemblages appear only in glauconitic sands and sandstone from Gostynin IG 1 (at depth 738 m) or in marls underlying these glauconitic sands (Bąkowa IG 1, depth 941 m). Their taxonomic composition allows distinguishing the standard, upper Albian nannoplankton zone CC 9 *Eiffellithus turrisieffeli* (Perch-Nielsen, 1985) or the boreal one – BC 27 (Bown et al., 1999). The CC 9 Zone comprises the uppermost Albian and the Lower and Middle Cenomanian. Its lower boundary corresponds to the upper part of the ammonite *inflatum* Zone (Bown et al., 1999). The British BC 27 Zone comprises a shorter stratigraphic interval than the standard CC 9 Zone, corresponding only to the uppermost Albian and the lower part of the Lower Cenomanian *mancelli* Zone. Deposits corresponding to the BC 27 (or CC 9) Zone have been distinguished in the sections of Gostynin IG 1 and Bąkowa IG 1 (Fig. 25), as well as in glauconitic sands from the abandoned gravel pit in Annopol. Besides *Eiffellithus turrisieffeli* (Fig. 31F) – the index species for the mentioned zones – the nannoplankton assemblages include also other species that appear for the first time in the Upper Albian, such as: *Axopodorhabdus albumanus, Gartnerago praeobliquum, Prediscosphaera columnata* (Fig. 31G, H), and *Tranolithus orionatus* (Fig. 31B, C). No Lower Cenomanian nanofossil species were found in the studied sections.

Stratigraphic position of the sedimentary succession from the Wąwał clay-pit has been attributed to the Lower and partly Upper Valanginian, on the basis of ammonite assemblages. It was correlated with the *petransiens*, *campylo toxus*, *verrucosum*, and *trinodosum* zones (Fig. 3). The lowermost layers in the section, representing the Lower Valanginian, contain almost monospecific coccolith assemblages with *Watznaueria barnesae* (Black). They may be thus included into the nannoplankton zone NP 3 *Watznaueria barnesae* and correlated with the lowermost strata of the Bodzanów Formation from Gostynin IG 1 and Łowicz IG 1 sections (Figs 21, 22). The taxonomic impoverishment of the nannoplankton assemblages was also observed in the Lower Valanginian sediments of the Lower Saxony Basin (Mutterlose, 1991). The sedimentary successions with the ammonites of the *verrucosum* Zone have been there attributed to the *Tegumentum striatum* Zone (Mutterlose, 1991). This zone includes the Upper Valanginian, without the uppermost part corresponding to the ammonite *tuberculata* Zone. This interval is correlated with the “Beds with *Dictotomites*”, that were established in the German Basin (Mutterlose, 1991).

The stratigraphic position of the Białobrzegi Formation recognised in the southern part of the Warsaw Trough and in the north-eastern margin of the Holy Cross Mountains has also been revised. In the cored section from Białobrzegi IG 1, nanofossil zones: PN 9 through PN 13, corresponding to the Upper Barremian and Lower Aptian, have been found in a clayey-marly sequences with intercalation of carbonates and glauconite-bearing sandstone (Figs 24, 25). The Białobrzegi Formation has hitherto been included in the Upper Valanginian and Lower Hauterivian (Marek, 1977b, 1997). The Cieszanów Formation from boreholes Narol IG 1 and Narol IG 2 may be included in the nannoplankton zone PN 9, comprising the Upper Hauterivian and Lower Barremian, and not the Upper Valanginian and Lower Hauterivian, as it was accepted previously (Marek, 1997). The appearance of *Eprolithus floris* (Fig. 24) and of the horizon of abundant *Nanconocus* (Fig. 25) are the last “events” observed in the studied Lower Cretaceous sedimentary series beneath the Mogilno Formation, barren in fossils. The age of the host sediments, by analogy with the German Basin, was determined as the Lower Aptian. Another episode of flourishing nanofloral assemblages occurred only in the Late Albian. Nannoplankton assemblages rich in specimens and taxonomically diversified have been recorded in glauconitic sands from the cored sections from Gostynin IG 1 (depth 738–740 m) and Bąkowa IG 1 (depth 925–941 m), as well as in glauconitic and marly sands from gravel-pit at Anopol. They provided base for identification of the standard nannoplankton zone CC 9 *Eiffellithus turrisieffeli*, comprising the uppermost Albian (*dispers* ammonite zone). Analysis of calcareous nannoplankton assemblages within the scope of this study allowed to attribute the sandstone of the Mogilno Formation to the stratigraphic interval comprising the Upper Aptian and Lower and Middle Albian, and not the Barremian–Middle Albian, as it was accepted before (Marek, 1997; Leszczyński, 1997).

CALCAREOUS NANNOPLANKTON VERSUS PALAEOGEOGRAPHY AND PALAEOCCLIMATE

The studied Lower Cretaceous sedimentary series in central and southeastern Poland include calcareous nannoplankton assemblages with significant amount of species characteristic of the Tethyan Realm. These include genera: *Nanconocus* (Figs 26L, 28J, 30J, K), *Micrantholithus* (Figs 26K, 28H), *Libraphidites* (Fig. 28G), *Rhagodiscus* (Fig. 31D), and *Watznaueria* (Fig. 27H) (Thierstein, 1973; Warne, 1992), as well as *Cruciellipsis cuvillieri* (Manivit), *Spectonia colligata* Black (Fig. 27G), and *Calcicalathina oblongata* (Worsley) (Bown et al., 1999). They are accompanied by forms with less restrictive ecological requirements and by species typical of the Boreal Realm: *Eiffellithus striatus* (Black), *Tegulalithus septentrionalis* (Stradaner), and *Zeugrhabdotus sisyphus* (Gartner) (Bown et al., 1999). The boreal elements are, however, less numerous than the tethyan ones. The thermophilic species are especially numerous in the Upper Berriasian, lowermost Valanginian (*petransiens* ammonite Zone), the lower part of the Upper Valanginian (*verrucosum* Zone), and also in the Upper Hauterivian and Lower Aptian. The nanofossil assemblages from the higher part of the Lower Valanginian indicate cooler episodes. The occurrence of tethyan species in sediments of almost all Lower Cretaceous stages, from the Berriasian through the Aptian, indicates an opening of the Polish Basin towards the Tethys at that time. The finding of
calcareous nannoplankton assemblages typical of the Early Aptian and rich in tethyan elements, suggests a possible new look at palaeogeography of the later part of the Early Cretaceous. According to the earlier interpretation, the Polish Basin was closed on the south and open only towards the north-west during the Barremian, Aptian, and Early Albian (Marek, 1988; Leszczyński, 1997). Our results, concerning the assemblages of calcareous nannoplankton, microfauna, and ammonites, contradict such an interpretation.

The calcareous nannoplankton assemblages allow also for drawing some conclusions regarding palaeocurrents. These probably had to move water masses from the south towards the north during a prevailing part of the Early Cretaceous. The palaeocurrent system in the Late Valanginian could be different, that is from the north-west towards the Polish Basin. This conclusion is based on the analysis of ammonite and calcareous nannoplankton assemblages. The ammonite assemblages in the verrucosum Zone include many Mediterranean forms, while the calcareous nannoplankton includes numerial boreal species. Mutterlose (1993) has even observed the occurrence of single specimens of the boreal species Micranlholithus speetonensis in these strata, in the Wąwak section. The amounts of tethyan coccoliths clearly increase beginning with the Lower Hauterivan, though boreal species, such as Eprolithus antiquus, Tegulalithus septentrionalis, and Nannoconus abundans are present in nannoplankton assemblages from central Poland.

The taxonomic composition of the nannoplankton assemblages also allows for drawing conclusions regarding basin palaeobathymetry and the distance of a studied section from the ancient shoreline. The presence of numerous calcareous dinocysts of genus Pithonella in the Berriasian sediments in both central and southeastern Poland indicates a very shallow sedimentary environment (shallow shelf – carbonate platform). The predominance of the representatives of genus Micranlholithus in the Upper Hauterivan of the southern Lublin area, accompanied by very low taxonomic diversity of the assemblages (wells: Narol IG 1, Narol IG 2), may indicate proximity of a shore and a stronger influence of the Tethyan Realm in this part of sedimentary basin.

DEPOSITIONAL SEQUENCES IN THE LOWER CRETACEOUS DEPOSITS IN CENTRAL AND SOUTHEASTERN POLAND

The large distances between the boreholes, the lack of full well-cores, and facies variability hamper a detailed subdivision and interpretation of the Lower Cretaceous strata in the studied area. That is why the method of sequence stratigraphy was used for their correlation. It allowed discerning of several types of chronostratigraphically significant features, such as transgressive surfaces, maximum flooding surfaces or sequence boundaries. These boundaries allowed for quite precise identification of several genetically related depositional systems tracts, which originated between episodes of significant sea level fall (Posamentier et al., 1988), thus defining the sequences bounded at the top and at the base by unconformities or their correlative conformities (Mitchum, 1977).

An important aspect of the presented analysis is the possibility of identifying genetical sequences (sensu Galloway, 1989), that reflect the stratigraphic record of basin filling between two successive sea-level highstands. The division into genetic units is easier to draw only basing on wire-line logs and a small amount of cores, because the maximum flooding surfaces are easier to identify than the sequence boundaries in the EXXON scheme. These surfaces are easy to identify on geophysical logs because they occur most frequently between upward fining (retrogradational) and upward coarsening (progradational) cycles. Additionally, maximum values on gamma-ray logs are present at the same positions as the maximum flooding surfaces, which is due to the presence of highly radioactive components (Loutit et al. 1988; Van Wagener et al., 1990; Walker & James 1992; Emery & Myers, 1996; Miall, 1997).

Position of interpreted boundaries in all analysed wells is shown in their synthetic geological cross-sections (Figs 33–42), which additionally include:

- gamma-ray combined with neutron, as well as spontaneous potential and a selected resistivity logs,
- lithological data from cores and interpreted from well log data in the non-cored intervals,
- available palaeontological and lithofacies data,
- interpretation of sedimentary environments,
- proposal of depositional sequences,
- curve of sea-level changes.

The data thus prepared were used to plot two correlation cross-sections. The first one (Fig. 43) spans the following wells: Gostynin IG 4, Gostynin IG 1, Gostynin IG 3, Żychlin IG 1, Łowicz IG 1, Korabiewice PIG 1, Warka IG 1, Białobrzegi IG 1, Potok IG 1 (Warsaw Trough), Narol IG 1, and Narol IG 2 (SE part of Lublin Trough). The other (Fig. 44) starts from the Narol IG 1 (which connects the two cross-sections), and then runs through wells situated at the front of the main Carpathian overthrust near Rzeszów, that is: Nawsie 1, Zagorzyce 6, Zagorzyce 7, Ropczyce 7, Staśówka 1, Dębica 2, Wola Wielka 2, and Wiewiórka 4. This cross-section could be drawn, despite of the 250-km distance between wells Narol IG 1 and Nawsie 1, because the Lower Cretaceous deposits in these areas are closely related in facies. The complex, blocky geological structure along the lines of both sections, and the fact that the Lower Cretaceous deposits occur at different depths did not allow for presentation of all data at once at readable scale. For this reason the sections are drawn levelled to selected stratigraphic datum – the Gostynin – Narol section to the Tithonian–Berriasian boundary, and the Narol – Wiewiórka section to the Berriasian–Valanginian boundary (Figs 43, 44). They are accompanied by the sections drawn through the same wells, but showing true depths of the studied deposits (Figs 45, 46). All cross-sections were made preserving the horizontal and vertical scales. A detailed list of the depths of occurrence of successive stratigraphic stages in the studied well sections is shown in Tables 1 and 2.
Table 1

<table>
<thead>
<tr>
<th>Well:</th>
<th>Gostynin IG-4</th>
<th>Gostynin IG-1</th>
<th>Gostynin IG-3</th>
<th>Żychlin IG-3</th>
<th>Łowicz IG-1</th>
<th>Korabie-wicze PIG-1</th>
<th>Warka IG-1</th>
<th>Bialobrzegi IG-1</th>
<th>Potok IG-1</th>
<th>Narol-IG-2</th>
<th>Narol-IG-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Distance: [m]</td>
<td>0.0</td>
<td>6500.0</td>
<td>24900.0</td>
<td>50500.0</td>
<td>76500.0</td>
<td>108500.0</td>
<td>160500.0</td>
<td>177500.0</td>
<td>318600.0</td>
<td>390200.0</td>
<td>399200.0</td>
</tr>
<tr>
<td>Cenomanian/ Turonian</td>
<td>1159.3</td>
<td>736.6</td>
<td>Lack</td>
<td>599.3</td>
<td>292.1</td>
<td>1478.8</td>
<td>1109.4</td>
<td>832.6</td>
<td>225.0</td>
<td>1341.0</td>
<td>1371.0</td>
</tr>
<tr>
<td>Aptian-Albian/ Cenomanian (TS)</td>
<td>1161.0</td>
<td>737.9</td>
<td>Lack</td>
<td>602.5</td>
<td>293.6</td>
<td>1496.2</td>
<td>1128.0</td>
<td>867.2</td>
<td>226.7</td>
<td>1343.0</td>
<td>1373.0</td>
</tr>
<tr>
<td>Barremian/ Aptian-Albian (SB)</td>
<td>1335.9</td>
<td>914.2</td>
<td>145.5</td>
<td>795.9</td>
<td>476.0</td>
<td>1617.0</td>
<td>1179.3</td>
<td>952.5</td>
<td>Lack</td>
<td>Lack</td>
<td>Lack</td>
</tr>
<tr>
<td>Hauerivian/Barremian (MFS)</td>
<td>1353.2</td>
<td>923.2</td>
<td>157.3</td>
<td>815.0</td>
<td>486.0</td>
<td>1623.0</td>
<td>1185.1</td>
<td>967.0</td>
<td>Lack</td>
<td>1364.4</td>
<td>1390.4</td>
</tr>
<tr>
<td>Lower/Upper Hauerivian (MFS)</td>
<td>1375.0</td>
<td>Lack</td>
<td>180.0</td>
<td>841.0</td>
<td>515.0</td>
<td>Lack</td>
<td>1202.0</td>
<td>995.0</td>
<td>Lack</td>
<td>1369.2</td>
<td>1397.4</td>
</tr>
<tr>
<td>Volanginian/ Hauerivian (TS)</td>
<td>1387.0</td>
<td>930.0</td>
<td>203.0</td>
<td>860.0</td>
<td>531.0</td>
<td>Lack</td>
<td>1206.0</td>
<td>1015.0</td>
<td>Lack</td>
<td>1377.6</td>
<td>1410.1</td>
</tr>
<tr>
<td>Lower/Upper Volanginian (FS)</td>
<td>1405.0</td>
<td>966.0</td>
<td>229.9</td>
<td>886.0</td>
<td>545.0</td>
<td>Lack</td>
<td>Lack</td>
<td>1016.0</td>
<td>255.0</td>
<td>1392.1</td>
<td>1422.0</td>
</tr>
<tr>
<td>Berriasian/ Volanginian (MFS)</td>
<td>1427.3</td>
<td>996.0</td>
<td>265.4</td>
<td>915.0</td>
<td>572.6</td>
<td>Lack</td>
<td>1208.0</td>
<td>1020.0</td>
<td>260.0</td>
<td>1400.0</td>
<td>1435.0</td>
</tr>
<tr>
<td>Middle Berriasian (SB)</td>
<td>1445.0</td>
<td>1015.0</td>
<td>281.0</td>
<td>937.5</td>
<td>590.0</td>
<td>Lack</td>
<td>1216.0</td>
<td>1032.0</td>
<td>265.0</td>
<td>1419.5</td>
<td>1450.2</td>
</tr>
<tr>
<td>Lower Berriasian (FS)</td>
<td>1451.0</td>
<td>1025.0</td>
<td>296.0</td>
<td>950.0</td>
<td>603.0</td>
<td>1642.0</td>
<td>1229.3</td>
<td>1042.0</td>
<td>275.0</td>
<td>1428.3</td>
<td>1460.1</td>
</tr>
<tr>
<td>Tithonian/ Berriasian (SB)</td>
<td>1491.0</td>
<td>1062.0</td>
<td>335.0</td>
<td>986.0</td>
<td>640.0</td>
<td>1662.0</td>
<td>1261.0</td>
<td>1077.0</td>
<td>304.0</td>
<td>1504.1</td>
<td>1539.4</td>
</tr>
</tbody>
</table>

Lower Berriasian

The stratigraphic boundary between the Tithonian and Berriasian in Polish Lowlands was accepted at the base of a nearly 30-m-thick series of carbonate-sulphate deposits. This boundary has a regional extent and can be traced over a distance of more than 170 km. It shows distinct characteristics of a sequence boundary connected to a relative sea-level fall. Two sets of criteria, namely stratigraphical and lithological ones, allowed identifying this surface quite precisely in wire-line logs. The underlying Upper Tithonian series, developed as carbonate-marly facies, passing in the uppermost part to carbonate-evaporitic deposits, according to sedimentological data was laid down in similar environmental conditions as the Lower Berriasian succession (Gaździcka, 1996). The Lower Berriasian facies assemblage consists of alternating carbonate-sulphate deposits, including: marls, limestone, marly limestone, oolithic limestone, dolomites, gypsum and anhydrites. It was identified in cored sections from the following wells: Gostynin IG 4, Gostynin IG 1, Gostynin IG 3, Żychlin IG 3, and Łowicz IG 1. The clearly shallow-water nature of these sediments is proven by sedimentary structures, identified in anhydrites, typical of supratidal environments. Anhydrites are mostly accompanied by boundstones with laminated structures (fragments of cyanobacterial-algal mats), bird’s eye structures, and numerous bioclasts. They contain exclusively remains of shallow-water benthic organisms — invertebrates, and protists. Limestone beds are locally considerably dolomitic (Gaździcka, 1996). The appearance of shallow-water evaporites is known from intracratonic basins, usually as an effect of isolation from the world ocean caused by a sea-level fall. Such conditions provide for sedimentation of a lowstand system tracts with evaporites in central parts of basins (Tucker & Chalcraft, 1991; Tucker, 1991; Walker & James, 1992, Kutek, 1994). This system tract displays a high lithological variability discernible in both the core material and geophysical well logs. The geophysical data show a clearly bipartite structure of the described series. Sulphate sediments appear twice in the section, separated by a clayey-marly series suggesting that the lowstand system tract may consist of two lower-order cycles or sequences, as has been observed also in other sedimentary basins of that type (Honford & Loucks, 1993). This is especially well visible between wells Gostynin IG 4 and Łowicz IG 1 (Figs 33–36, 45).

Towards the southeast, this facies assemblage is replaced by a marly-carbonate facies assemblage; oolithic limestone has been found in the Bialobrzegi IG 1 well. This facies variability may suggest variable sedimentary basin bathymetry along the line of the interpreted cross-section
and be the result of random selection of wells for the analysis. Marly sediments overlie the carbonate-sulphate series. In the Gostynin IG I well, at the base of marly sediments were found detritical-mudstone marl, very slightly dolomitic, grey, intercalated with marly limestone with few black clay-balls. The change of facies and the appearance of clay-balls at its base suggest the beginning of a transgression. The horizon with clay-balls lies on the transgression surface (TS) (Fig. 34), which marks the beginning of a transgressive systems tract. The marly facies of the transgressive system tract was found in the Gostynin IG 4 to Łowicz IG 1 wells (Figs 20-24), as well as in the Warka IG 1 and Białobrzegi IG I wells (Figs 33-38). A large stratigraphic gap is probably present in the Korabiewice IG I well. The Lower Berriasian lowstand systems tract (only one series of carbonate-sulphate deposits is present here) is directly overlain by the Upper Hauterivian deposits.

A transgressive system tract was recorded in the upper part of the Lower Berriasian. It consists of black, argillaceous and marly shales, rich in remains of small-shelled fauna, with thin intercalations of finely laminated limestone. Above this system tract, a change in the record of physical characteristics of rocks is clearly discernible in geophysical well logs, implying a facies change. A thin interval of shales, black marly shales, combined with gamma-ray log showing high values, suggests that this may be a condensed interval. A boundary of marine flooding surface may lie within it (Fig. 37), which is also the boundary between the Lower and Middle Berriasian. In the area of wells Narol IG 1 and Narol IG 2, the Lower Berriasian deposits were also laid down in a zone of a shallow-water carbonate platform. However, the thickness of these strata is there almost twice greater (about 80 m), which may be related to deposition in a zone that was tectonically less active, hence less subject to erosion of older deposits, but with a permanent trend of sedimentary basin bottom subsidence. Three lower-order depositional sequences may be distinguished in these wells. The uppermost sequence continues to the very boundary between the Middle and Upper Berriasian (Figs 39, 42).

Similar sequences are difficult to distinguish in the peri-Carpathian part, because of the nearly fourfold thickness reduction. The bottom of the Berriasian deposits is also marked by a sequence boundary in the basement of the Carpathian Foredeep (Figs 40, 41). It is possible that the age boundary lies somewhat lower, within a distinct argillaceous horizon, interpreted as a flooding surface (FS). This boundary is nearly coincident with that proposed by Zdanowski et al. (2001). It separates the Tithonian strata laid down in lagoon and tidal flat (Ropczyce Series – calcareous-dolomitic member) and the Lower Berriasian deposits (Ropczyce Series – calcareous-marly member), that formed in a similar environment, but with the presence of near-shore lake sediments (Zdanowski et al., 2001). These were thus extremely shallow-water environments, similar to those prevailing in the northern part of the study area. The
Fig. 33. Summary chart for the Lower Cretaceous in Gostynin IG-4. For explanation – see Fig. 44.
Summary chart for the Lower Cretaceous in Gostynin IG-1. For explanation – see Fig. 44
Fig. 35. Summary chart for the Lower Cretaceous in Zychlin IG-3. For explanation — see Fig. 44
Fig. 36. Summary chart for the Lower Cretaceous in Łowicz IG-1. For explanation – see Fig. 44
Lower Berriasian is about 25 m thick in southern Poland. One complete lower-order sequence may be distinguished within it and a lowstand and a transgressive system tracts. This is bounded at the top by a flooding surface, interpreted in the whole area as the boundary between the Lower and Middle Berriasian (Figs 43, 44).

The Middle Berriasian strata over the whole southern region of their occurrence are of similar facies type, resulting from their origin in the area of extensive, extremely shallow carbonate platform.

Upper Berriasian

The top of the highstand system tract that comprises the Middle Berriasian strata is accepted as the boundary of another lower-order depositional sequence. This sequence comprises a lowstand system tract and a transgressive system tract, both laid down in the Late Berriasian time. The sequence boundary is here a type 2 boundary and it is already the second boundary of this type in the Berriasian section in the Polish Lowlands, and the third one in the Lublin Trough area (Fig. 43). Its record is less distinct, as the boundary lies within deposits laid down in deeper environment than those assumed for the Lower and Middle Berriasian. This indicates a successive deepening of the sedimentary basin. Deposits belonging to the Upper Berriasian in this part of the study area are mainly developed as mudstones with thin intercalations of sandstones and, usually, as marls in their lower part. Arenaceous-marly deposits, about 5 m thick, found in the Łowicz IG 1 well (Fig. 36) and clearly recorded in all the studied geophysical well logs, deserve special attention. The above-mentioned sequence

Fig. 37. Summary chart for the Lower Cretaceous in Korabiewice PIG-1. For explanation – see Fig. 44

Lower Berriasian is about 25 m thick in southern Poland. One complete lower-order sequence may be distinguished within it and a lowstand and a transgressive system tracts. This is bounded at the top by a flooding surface, interpreted in the whole area as the boundary between the Lower and Middle Berriasian (Figs 43, 44).
boundary has been delineated at their base. The presence of a scarce amount of similar deposits may be inferred for the area near Gostynin, basing on the geophysical well-log data. Marly sediments continue through the Upper Berriasian in the area of Warka and Białobrzegi. The transgressive surface that starts the transgressive system tract within this sequence is difficult to distinguish in all the studied wells (Fig. 43). Above the mentioned surface, black mudstones and claystones with accumulations of thin-shelled bivalves, as well as horizons of pyritized plant detritus and pyritized bioturbation structures appear in the facies record. Spherical clayey-ferruginous concretions were also observed in these sediments. The aforementioned deposits display characteristics of a condensed interval, which contains the maximum flooding surface (MFS), distinguished at the position of maximum high gamma log spike. Up to this boundary, the Berriasian sedimentary basin, whose nature is defined by the facies record and the nature of geophysical well logs as retrogradational, deepened gradually.

In the southeastern part of the Lublin Trough, there occur somewhat different sediments. The Upper Berriasian series in wells Narol IG 1 and Narol IG 2 (Figs 39, 42) are developed in carbonate facies, dominated by oolithic limestone. The Lower and Middle Berriasian deposits were laid down within a broadly understood carbonate platform. Sea-level rise often permits increased carbonate production and may often lead to establishing of the carbonate platform. Banks of oolithic sands often form in such conditions (Hondford & Loucks, 1993). It may be thus supposed that in this case, similarly as in the northern part of the study area, there occurred a sea-level rise. Sediments in the other studied wells from the Rzeszów area were laid down in a zone of a lagoon-tidal flat, where interpretation of sea-level changes is difficult. Carbonate sediments were quite rapidly

![Fig. 38. Summary chart for the Lower Cretaceous in Białobrzegi IG-1. For explanation – see Fig. 44](image-url)
Fig. 39. Summary chart for the Lower Cretaceous in Narol IG-2. For explanation – see Fig. 44

replaced by siliciclastic ones, often indicating a deeper sedimentary environment (Fig. 41).

Summing up, two complete lower-order depositional sequences may be discerned in the Berriasian (in the area sampled by Narol IG 1 and Narol IG 2 wells – three sequences), laid down in more and more deep-sea conditions. The third sequence, beginning at the boundary between the Middle and Upper Berriasian, has only a lowstand systems tract and a transgressive systems tract, which terminates, in the zone between Gostynin and Białobrzegi, with a condensed interval that includes the maximum flooding surface (Figs 43, 44). It is also the stratigraphic boundary between the Berriasian and the Valanginian. The boundary is difficult to identify in the area between the wells Potok IG 1 and Narol IG 1 (Fig. 43), because of the lack of distinct changes in the wire-line logs, and because of the insufficient amount of core material and palaeontological data. The boundary was placed within an argillaceous intercalation in a package of oolithic limestone, also laid down in conditions of transgressive and highstand systems tract. The Berriasian sedimentary succession in the peri-Carpathian area is of extremely shallow-water character, but with a gradual deepening trend. The deepening is recorded in the Zagorzyce 7 well as black mudstones, poor in organic remains, but with foraminifers and gastropods characteristic of shelf environments. In this area, similarly as in the north, two complete sequences could be distinguished, and probably a lowstand systems tract is sharply covered by sediments of a transgressive system tract, with a maximum flooding surface at the top.

Lower Valanginian

The thickness of the Valanginian strata oscillates around 30 m in the northern part of the study area, between wells Gostynin IG 4 and Łowicz IG 1 (Figs 33–36), and it decreases southwards to only a few metres (Fig. 34). In wells Narol IG 1 and Narol IG 2 (Figs 39, 42) the thickness of the Valanginian strata exceeds 10 m. In the basement of the Carpathian Foredeep, the thickness of this member rises to 25 m (Wola Wielka 2; Fig. 44). Three parasequences are discernible in geophysical well logs within the Lower Valanginian elastic deposits in the northern zone of the study area. This is especially well visible in the gamma-ray log in the Gostynin IG 1 well (Fig. 34). This set of para-
Fig. 40. Summary chart for the Lower Cretaceous in Wiewiórka 4. For explanation – see Fig. 44

Fig. 41. Summary chart for the Lower Cretaceous in Zagorzyce 7. For explanation – see Fig. 44

sequences comprises a highstand systems tract. Each successive parasequence, according to the definition (Van Wagoner et al., 1990), is bounded by lower-order flooding surfaces. Sandstones in the uppermost parts of the parasequences are mainly fine-grained, laminated with mudstones or claystones. Ferruginous oolites are present within the sandstone complex. The parasequence set is of a clearly progradational (shallowing upwards) nature. Similar parase-
sequence sets are frequent in clastic, carbonate or mixed environments (Van Wagoner et al., 1990; Hondford & Loucks, 1993).

A facies succession typical of a parasequence is very well documented in core material from the Gostynin IG 1 well, at the depth 966.8–976 m (Fig. 39). This parasequence is bounded at the base and the top by marine flooding surfaces. Claystones, in which lie the parasequence boundaries, display concentrations of small-shelled fauna, as well as siderite and pyrite concretions. Intercalations of limestone, or even coquinas, or siliciclastic sediments were found in core material from the same interval in the Gostynin IG 3 well. Such sediments often occur at the marine flooding surface (FS), as the so-called transgressive lag deposits (Van Wagoner et al. 1990). Siderite intercalations occur in the cored section from Łowicz IG 1, in the basal part of the parasequence. A hiatus, probably corresponding to the Valanginian through Lower Hauterivian interval, is present in wells Korabiewice PIG 1 (Fig. 37) and Warka IG 1. Valanginian strata in the Warka IG 1 well are much reduced in thickness and, according to geophysical well-log data, they are developed in carbonate-marly facies. A reduced thickness of the Lower Valanginian strata is also known from wells Białobrzegi IG 1 (Fig. 38) (marly facies) and Potok IG 1 (oolithic limestone facies).

The Lower Valanginian strata in carbonate facies, mainly oolitic limestone, were found in wells Narol IG 1 and Narol IG 2 (Figs 39, 42). They are probably in depositional continuity with the Berriasian strata, laid down in a zone of a high-energy platform, during highstand systems tract. The Lower Valanginian strata in the Zagorzyce area are mainly carbonates, laid down in zones from open shelf (thin carbonate-siliciclastic deposits) to extremely shallow carbonate platform. They demonstrate, similarly as in the other parts of the studied area, deposition during the falling stage of the sea-level. The boundary between the Lower and Upper Valanginian strata is marked by a lower-order marine flooding surface. In the northern part of the study area, it lies at the top of the third parasequence. Southeastward of the Białobrzegi IG 1 well, to Narol IG 1, it has been delineated within carbonate deposits (Fig. 43). In the peri-Carpathian zone, it probably lies within a thin clayey intercalation (Fig.
A stratigraphic hiatus is probably present in the section of the Wiewiórka 4 well, corresponding to a time interval ranging from the Late Valanginian to Barremian (?).

Upper Valanginian

In the Late Valanginian time, sedimentation in the Warsaw and Lublin troughs was taking place in conditions of a highstand system tract. This is indicated by facies data — lithology of sediments and fossil assemblages. These allow inferring that in the area between the Gostynin IG 4 and the Łowicz IG 1 wells (Figs 33–36) deposition was taking place in a central and outer shelf zone. On the other hand, in the southern part of the Lublin Trough and the present basement of the Carpathian Foredeep (area of Dębica), sedimentation occurred in a carbonate platform zone, similarly as in the Early Valanginian. One parasequence is clearly discernible in the northern area (in wells Gostynin IG 4, IG 1, and Zychlin IG 3), which comprises the nearly complete Upper Valanginian section. A change in sedimentary basin conditions occurred during the sedimentation of the uppermost part of the Upper Valanginian, marked in both sediment lithology and geophysical well logs. It equates to the another sequence boundary. The overlying strata are interpreted as a lowstand system tract. Above this boundary, in the Gostynin IG 1 well (Fig. 34), there are sandy mudstones with admixture of ferruginous oolites, overlain with bioclastic limestone rich in bivalve fauna and than with argillaceous limestone and sandy mudstone. At the top of these sediments a stratigraphic hiatus exists, corresponding to the Lower Hauterivian strata. The sediments, that represent the described systems tract in the Gostynin IG 4 well (Fig. 33), are similar, but less thick. A greater thickness of the lowstand system tract was found in the Łowicz IG 1 well (Fig. 36). According to geophysical well-log data and cuttings, the deposits forming this tract are sandstones. The blocky character of the geophysical logs may suggest that these are channel-fill sediments or sediments of a shelf valley, incised into the shelf sediments of the highstand system tract (?). Similar type of sediments is present in the Potok IG 1 well, suggesting a large drop in the sea level between these wells, possibly caused by block tectonic movements. Such cause of shelf sandstone appearance in the basin centre may be additionally supported by the local appearance of these phenomena, as no such changes were observed in the remaining area. A similar boundary, at the base of a new sequence, has been recognized in the southern part of the studied area (Figs 41, 44). It is placed there immediately above the aforementioned flooding surface. It may record a slight sea-level fall. This boundary marks the beginning of the new depositional sequence. A transgressive surface, that is also the stratigraphic boundary between the Valanginian and Hauterivian, has been identified at the top of the here defined lowstand systems tract. This boundary is of regional extent and has been well confirmed with biostratigraphic data in the whole studied area.

Lower Hauterivian

A transgressive system tract with bioturbated argillaceous shales containing abundant crushed fragments of thin-shelled fauna and dispersed ferruginous oolites and glauconite begins above the transgressive surface (Gostynin IG 4). In other wells, the thickness of Lower Hauterivian sediments is greater. These are fine-grained siliciclastic deposits, locally slightly marly, with accumulations of mollusc shells and glauconite. A slightly increased content of sand material has been found in the Łowicz IG 1 well (Fig. 36). Lower Hauterivian deposits in the sections of the Białobrzegi IG 1 (Fig. 38) and Warka IG 1 wells have been identified using wire-line logs and palaeontological data. These deposits are represented by marly facies and have reduced thickness. A probably complete lack of the Lower Hauterivian strata should be assumed for the wells Kora-biewice PIG 1 and Gostynin IG 1 (Figs 34, 37). A large stratigraphic hiatus, equivalent to the Hauterivian, Barremian, Aptian–Albian, is present in the Potok IG 1 well (Fig. 43). In the sections of the Narol IG 1 and Narol IG 2 wells (Figs 39–42), the Lower Hauterivian transgressive system tract is developed in marly mudstone facies, suggesting uniform sedimentation over the most part of the study area and, possibly, a global sea-level fall. A maximum flooding surface is present in the Narol IG 1 well, at a depth of 1397 m. It lies within marly mudstones with echinoderm debris and fish teeth, often found in condensed horizons. This boundary is also the boundary between the Lower and Upper Hauterivian. Two boundaries were distinguished within this stage. They correspond to a flooding surface and a sequence boundary. Both are lower-level boundaries. A maximum flooding surface was recognized in the top layers. It separates the Lower and Upper Hauterivian strata.

Upper Hauterivian

The most complete Upper Hauterivian sections seem to be present in wells Gostynin IG 4, Gostynin IG 3, Zychlin IG 3, and Łowicz IG 3 (Figs 33, 35, 36). These strata are mostly mudstones laid down in conditions of highstand system tracts and possibly a lowstand or transgressive system tract. The Upper Hauterivian deposits in wells Warka IG 1 and Białobrzegi IG 1 (Fig. 38) are developed in marly-mudstone facies, which indicates a lateral facies change (Fig. 43). Only the uppermost part of deposits of this age is present in the Gostynin IG 1 well (Fig. 34), as shown by palaeontological data. The Upper Hauterivian strata have incomplete thickness also in wells Narol IG 1 and Narol IG 2 (Figs 39, 42). Palaeontological evidence shows a thickness of only a few metres of these strata developed in the middle and outer shelf facies. Hauterivian strata are absent in the Rzeszów area (Fig. 44).

The maximum flooding surface is clearly recorded in wire-line logs between the Hauterivian and Berriasian deposits. It is marked by a characteristic maximum gamma-ray spike. This boundary lies within argillaceous strata rich in debris of thin-shelled fauna. Such record exists in data from wells Gostynin IG 4 through Białobrzegi IG 1 (Fig. 43). In contrast, in the well sections of: Narol IG 1, Narol IG 2 (Figs 39, 42), Nawsie 1, Zagorzyce 6, Zagorzyce 7, Ropczyce 7, Stasiówka 1, Dębica 2, Wola Wielka 2, and Wiewiórka 4, this boundary is erosional (Fig. 44). No sedimentary sequences younger than the Upper Valanginian are present in this area.
Barremian

Deposits of this age were identified using geophysical logs correlation in the Warsaw Trough area between wells Gostynin IG 4 and Białobrzegi IG 1 (Fig. 43). These are mainly fine-grained siliciclastic deposits, interpreted as laid down on the outer and partly middle shelf, in a highstand system tract. The top of these deposits is marked by a sequence boundary. It is at the same time the boundary of a very thick package of Aptian–Albian sandstones. Barremian deposits in the southern part of the studied area, in wells Narol IG 1 and Narol IG 2 (Figs. 39, 42), are developed as bioclastic and sandy limestone, apparently laid down in shallow-water conditions. This indicates a renewed development of a carbonate platform. Barremian deposits in the area of Zagorzyce are developed as marls, ooid-bioclastic limestone, cyanobacterial, and coralline limestone (Zdanowski et al., 2001), laid down in highstand conditions. It should be added that this succession is assigned to Valanginian by Zdanowski et al. (2001). It is possibly the topmost part of the Barremian deposits that may also include Aptian and Albian series (Fig. 41). This question still remains to be resolved. In this part of the studied area, thin Cenomanian deposits directly overlie Barremian or Barremian–Aptian–Albian deposits (Fig. 44).

Aptian–Albian

These deposits are present only in a part of the study area, between the wells Gostynin IG 4 and Białobrzegi IG 1 (Figs 33–38, 43). They are not separated on geophysical well logs, because the individual boundaries and rock series comprised between them could not be related to stratigraphy. A few sedimentary units could be, however, recognized in the whole section that has the nature of depositional sequences. Six such sequences have been identified in the Gostynin IG 4 well. In the last, youngest sequence, only the lowstand systems tract still belongs to the Albian. The transgressive system tract and the highstand system tract separated by the maximum flooding surface are included in the Cenomanian–Turonian deposits. Transgressive and highstand system tracts are thin, one to few metres, in the few recognized sequences. The positions of abnormally high values on the gamma-ray log correlate well with the occurrences of increased concentrations of glauconite and phosphorites.

The interpretation presented above is one of the possible solutions of the division of the thick siliciclastic sequence of the Aptian and Albian deposits. An alternative interpretation would connect the anomalous values on gamma-ray log with transgressive surfaces, often overlain by well-washed lag deposits whose material comes from the underlying strata. The presence of these thin coarse-clastic intervals may suggest that several slight sea-level rises gave way to the maximum flooding surface, whose position may be inferred somewhere in the middle part of the whole series. This interpretation may be also supported by the fact that this boundary separates two trends in wire-line logs, namely a retrogradational one below, from the clearly progradational one above. The stratigraphic boundary between the Aptian and Albian may also lie at that position.

Cenomanian–Turonian

The top parts of the Albian deposits in those wells that were cored contain mass accumulations of glauconite and phosphorites; sometimes in the form of quite sizeable concentrations. Their presence may indicate the maximum flooding, and may suggest that the sediments were laid down on a transgressive surface. The sandstones abruptly pass into overlying marls, limestone with inoccramid bivalves, and cherts. A maximum flooding surface was identified at the position of the abnormally high gamma-ray values; the surface may be the evidence of the Early Cenomanian transgression. Greater thickness of these deposits has only been found in the wells Korabiewice PIG 1, Warka IG 1, and Białobrzegi IG 1 (Figs 37, 38, 43). There, these deposits are also of marly-clastic nature. These deposits, however, are neither subject of any detailed stratigraphic nor palaeofacies interpretation in this paper.

Summing up, mainly sequences of type 3 and higher-order, perhaps already type 2 sequences (Fig. 47), may be distinguished in the whole section of the Lower Cretaceous deposits of the Warsaw Trough, Lublin Trough, and partly of the Carpathian Foredeep, and described above in detail. The first sequence corresponds to a time interval of about 12
The Upper Berriasian deposits were possibly laid down in a lowstand system tract and a transgressive system tract. Two distinct excursions of sea level are visible in the Haq’s curve in its Upper Berriasian part, not unequivocally confirmed in the studied section. Good agreement is observed at the Berriasian–Valanginian boundary, which coincides with a maximum flooding surface in both cases (Fig. 47). A set of three parasequences with clear characteristics of a progradational set (Figs 43, 47) is present in Lower Valanginian deposits, in the area of wells Gostynin IG 4 through Łowicz IG 1. Each of the parasequences is bounded by marine flooding surfaces. This set forms a highstand system track. The top boundary is a marine flooding surface and corresponds to the boundary marked by Haq et al. (1988), though these authors noted a type 1 sequence boundary in the middle part of the Lower Valanginian, not confirmed in the studied material (Fig. 47). The Upper Valanginian deposits represent a period dominated by highstand system tracts, similarly as in the scheme by Haq et al. (1988). A depositional sequence, probably bounded by a type 1 sequence boundary, starts in the top parts of this stage. The boundary marking this sequence in the wells Łowicz IG 1 (Fig. 24) and Potok IG 1 (Figs 36, 43) is erosional and cuts deeply into the underlying deposits of the lower part of the Upper Valanginian. The stratigraphic boundary between the Valanginian and Hauterivian deposits is a transgressive surface within a type 1 sequence over the whole study area.

Our analysis of wire-line logs suggests that the Barremian strata have progradational nature, corresponding in their characteristics to highstand system tracks, and so they have been interpreted as such. The deposits of this age have small thickness and it is difficult to discern within them three type 2 sequences as Haq et al. (1988) did (Fig. 47). The Barremian–Aptian boundary displays characteristics of a sequence boundary. A similar boundary of type 1 characteristics is present in the standard curve in the lower part of the Aptian. In both cases, two depositional sequences may be distinguished within this stage. The lack of stratigraphic data does not allow us to precisely delineate the Aptian–Albian boundary, but using the EXXON curve, in which this boundary is marked by a maximum flooding surface, it has been marked in the study area between two depositional
units – a retrogradational below and a progradational above – that most likely reflect the long-term sea-level changes. Several oscillations are discernible in the Albian part of the sea-level curve, difficult to identify using the available data sets from the study area. The Albian–Cenomanian boundary may be placed at the maximum flooding surface, above siliciclastic deposits with phosphorites and glauconite. These elements are typical for both, transgressive surfaces and deposits displaying characteristics of stratigraphic condensation, such as occurs during the maximum deepening of a sedimentary basin. A maximum flooding surface is also indicated at the Albian–Cenomanian boundary by Haq et al. (1988) (Fig. 47).

Cyclicity of sedimentation in the Lower Cretaceous section is much more difficult to describe in the area of wells Korabiewice PIG 1, Warka IG 1, and Białobrzegi IG 1 (Fig. 43), because of the high facies variability, stratigraphic hiatuses or even stratigraphic condensation, as in the case of the Warka IG 1 (in Aptian) or Białobrzegi IG 1 (in Valanginian–Early Hauterivian) wells. A similar situation has been recognized in the Cretaceous strata of the basement of the Carpathian Foredeep (Fig. 44) and of the southeastern part of the Lublin Trough. The sedimentary succession was there deposited in shallow-water environments of a carbonate platform. Numerous erosional surfaces (emergence surfaces) are present there, rendering the sections incomplete.

The stages of sea-level change are much more difficult to trace there. Previous attempts (Zdanowski & Gregosiewicz, 2001) cannot be directly compared with the interpretation proposed in this study, because Zdanowski and Gregosiewicz assumed different ages for the strata described there as the Ropczyce Series and the Dębica Series, but according to these authors, the series were mainly laid down in transgressive and highstand conditions.

PALAEOTECTONIC CONCLUSIONS

Our analysis of depositional sequences and the stratigraphic correlation within the Lower Cretaceous deposits may be used to reconstruct the possible palaeotectonic events in the Early Cretaceous time, in the area of the Polish Lowlands and the peri-Carpathian zone. The present-day distribution of the Lower Cretaceous strata in the whole studied area is shown in Figs 45 and 46, and the true depths of occurrence of the successive stratigraphic stages are plotted in Fig. 47. The most complete section of the Lower Cretaceous deposits was found in the Gostynin IG 4 well (Fig. 33), which may suggest the lack or minimal tectonic block movements in the area of this well. The total thickness of the Lower Cretaceous strata in this well attains 330 metres. In the Gostynin IG 1 well (Fig. 34), distant by ca. 6.5 km, there was a stratigraphic hiatus corresponding to the lower part of the Upper Hauterivian. These deposits were most likely removed by erosion due to sea-level fall, defined by the lowstand systems tract that starts in the upper part of the Upper Hauterivian. Despite of this, the thickness of the Cretaceous strata in this well attains 324 metres. Lower Cretaceous strata in the Gostynin IG 3 well may reach up to the Barremian (basing on the correlation of wire-line logs); the younger strata have been probably removed by Palaeogene erosion – so they indicate a post-Cretaceous block activity. The total thickness of the Lower Cretaceous beds in this well equals to 190 metres. Increased thickness of Albian deposits in Żychlin IG 3 well may suggest a slight tectonic activity. The total thickness of the Cretaceous deposits equals here 383 metres. Instead, only a slight reduction in the thickness of the lower part of the Upper Valanginian is present in the Łowicz IG 1 well, but this reduction is most likely related to erosional processes caused by a relative sea-level fall.

Much larger stratigraphic hiatuses are present in the wells Korabiewice PIG 1 (Fig. 37) and Warka IG 1, where hiatuses covering the interval from the higher part of the Lower Berriasian through the Upper Hauterivian (in the Korabiewice PIG 1 well), or the higher part of the Upper Berriasian and possibly the Lower and the lowermost Upper Valanginian and the higher part of the Albian in the Warka IG 1 well (assuming the stratigraphic interpretation is correct). This well also featured the greatest reduction in thickness of the Valanginian, Hauterivian, Barremian, and Aptian deposits, difficult to explain at this stage of study. Stratigraphic hiatuses or condensations are also possibly present in the Białobrzegi IG 1 well, especially in the Valanginian and Hauterivian (Fig. 38). Marked differences in thickness and lithology of deposits in the upper part of the Upper Berriasian and Valanginian was found in the sections of two wells, Korabiewice and Warka, that are situated on a block featuring a different subsidence rate. Significant reductions in thickness of the Berriasian and Lower Valanginian deposits – probably related to large stratigraphic condensation (perhaps on an isolated intrabasinal block) – were observed in the Potok IG 1 well. A short tectonic activity is here marked by the appearance of shallow-water sandstone deposits indicating a relative sea-level fall. A stratigraphic hiatus that reaches up to the Cenomanian is present above the Upper Valanginian deposits. The lack of these deposits is possibly due to significant tectonic activity and increased pre-Cenomanian erosion.

Late Hauterivian tectonic activity in the southern part of the Lublin Trough is indicated by the lack of sediments of that age and erosional surfaces found in well cores. However, the greatest stratigraphic hiatus corresponds to the Barremian and Cenomanian part of the succession. It is not clear whether the Aptian and Albian deposits are absent in this area, as may be the case in the Zagorzyce area (Figs 41, 44). Stratigraphic hiatuses have been documented there between the Lower Berriasian and the Upper Berriasian, and between the Lower Valanginian and the Barremian (Aptian–Albian) in the Wiewiórka 4 well (Fig. 40), as well as the hiatus corresponding to the Upper Hauterivian. These hiatuses may result from erosion over a large area from the southern Lublin area (wells Narol IG 1, Narol IG 2) (Figs 39, 42) through the Carpathian Foreland (e.g., Wiewiórka 4 well; Fig. 40), caused by the uplift of this area.

Unclear is the tectonic control (tectonic subsidence) of relative sea-level changes in the studied area. Undoubtedly, however, the Lower Cretaceous sedimentary series more than 300 m thick was laid down in a 40 million-years period in the zone of the Polish Basin, currently within the Polish
Fig. 45. Well-log cross section illustrating the true depth of the Lower Cretaceous in selected wells of Central Poland.
Fig. 46. Well-log cross section illustrating the true depth of the Lower Cretaceous in selected wells of the Carpathian Foredeep and Lublin Trough.
Fig. 47. The sequence boundaries identified in Gostynin IG-4 (Warsaw Trough) and a comparison with the global cycle chart of Haq et al. (1988)
Lowlands. One of the extension phases in the Mid-Polish Trough falls within the Early Cretaceous time (Kutek, 2001). Sedimentation occurred under conditions of major sea-level changes, possibly related to global sea-level changes, with superimposed local and regional block tectonics. The thickness of the studied deposits is much lower in the southern part of the studied area (180 to 120 m). The lower rate of sedimentation, in extremely shallow-water conditions and away of the zone of increased subsidence, could be related to the lack of accommodation space, so the sediment could be more susceptible to removal. Distinct tectonic events could occur in this region in the later part of the Early Cretaceous.

CONCLUSIONS

(1) The lower boundary of the Lower Cretaceous sedimentary series, described as the boundary between the Tithonian and Berriasian stages, is delineated within the carbonate-siliciclastic succession bearing evaporites, included in the Kcynia Formation. The new stratigraphic interpretation was enabled by results of micropalaeontological studies, which, together with the analysis of wire-line logs, enabled us to precisely locate the boundary in the studied well sections. This boundary is of regional nature and may be traced over a distance of more than 170 km. It shows distinct features of a sequence boundary (sensu Vail et al., 1977), attributed to a relative sea-level fall.

(2) The Berriasian deposits, according to the biostratigraphic criteria presented in this paper that follow the European standards, are divided in to three sub-stages: Lower, Middle and Upper. For the Middle and Upper Berriasian, ammonite and calcareous nannoplankton assemblages, present only in certain horizons in the deposits of this stage, were also taken into account. The analysis of geological well logs demonstrates that horizons rich in ammonites and nannoflora may be correlated with intervals attributed to the maximum flooding surfaces.

(3) The boundary between the Berriasian and Valanginian has been adopted according to the most recent criteria of the Mediterranean division. The ammonite petransiens Zone is the oldest one in the Valanginian. The lower boundary of the boreal robustum Zone, in the stratigraphic scheme elaborated for the Polish Basin, should be placed above the lower boundary of the petransiens Zone. The analysis of the Lower Valanginian ammonite assemblages indicates that the migration of boreal species defining the robustum Zone occurred later than the tethyan forms of the petransiens Zone.

(4) Parasequences reflecting relative sea-level changes may be recognized in siliciclastic Valanginian deposits of central Poland. They are especially distinct in the Lower Valanginian deposits, providing the basis for a precise correlation of the strata between the wells. The Valanginian sedimentary series, as compared with the Berriasian deposits, is of variable thickness. The lack of some depositional sequences, observed in particular wells, may be a result of local tectonic activity and variable subsidence rate. Biostratigraphic ammonite (robustum, heteropleurum, polytomus-crassus, and tripychoides) and calcareous nannoplankton (PN2 Zeugrhadbotus diplogrammus, PN 3 Watznaueria bornae, PN 4 Eiffellithus striatus, and PN 5 Conusphaera rothii) zones are recognized within this stage. Characteristic microfaunal assemblages and their sequence are defined.

(5) Valanginian deposits are palaeontologically confirmed in the southeastern part of the Lublin area and in the basement of the Carpathian Foredeep. The palaeontological evidence for the Hauterivian deposits is demonstrated for the first time, and in the Lublin area also for the Lower Barremian deposits. The detailed analysis of the wire-line logs, combined with the results of biostratigraphic studies, has shown that within the studied area stratigraphic hiatuses are present in the Lower and partly in the Upper Hauterivian. These can be the evidence of tectonic activity in the Mid-Polish Trough. In the Hauterivian, three ammonite zones have been recognized: noricum, amblygonium, and gothic-schei, alongside with as four calcareous nannoplankton zones: PN 6 Eprolithus antiquus, PN 7 Perissocyclus plethotretus, PN 8 Tegulalithus septentrionalis, and PN 9 Tegumentum octiformis.

(6) Nannoplankton zones and microfaunal assemblages characteristics of the higher part of the Lower Cretaceous are identified for the first time. These are zones: PN 10 nanocornus abundans and PN 11 Broinsonia matalosa in the Barremian, as well as PN 12 Farhania varolii and PN 13 Eprolithus floralis in the Aptian. The calcareous nannoplankton assemblages allow correlating the studied successions with the Lower Saxony Basin. Microfaunal and calcareous nannoplankton assemblages of the Barremian and Aptian age, together with the Lower Aptian ammonites, were found in the Białobrzegi IG 1 well, in deposits considered earlier as the Valanginian and Hauterivian ones.

(7) The results of palaeontological studies and the analysis of wire-line logs allows for reinterpretation of the stratigraphy of the Lower Cretaceous sedimentary series in southeastern Poland and in the southern part of the Warsaw Trough. Taxonomic composition of the microfauna and nannoflora assemblages that include numerous Tethyan taxa also allows for a new interpretation of the sedimentary basin palaeogeography in Barremian and Aptian times, indicating the opening of the Polish sedimentary basin towards the southeast. Moreover, the occurrence of the Tethyan species in nearly all the Lower Cretaceous stages, from the Berriasian through the Aptian, indicates the opening of the Polish Basin towards the Tethyan seas during the nearly whole Early Cretaceous time.

(8) Most of the depositional sequences recognized in this study may be described as 3rd order sequences, sensu Mitchum (1977), formed during time intervals of 1–10 million years. These sequences, in the areas of the Warsaw Trough, Lublin Trough, and partly of the basement of the Carpathian Foredeep, may be grouped in to three higher-order sequences, may be of the 2nd order.

(9) Analysis of the geophysical record of the Polish Basin sedimentary filling, combined with the results of the biostratigraphic, lithofacies and sedimentological data, allow drawing of the regional curve of sea-level change. Discrepancies between the two compared curves, namely those for the Warsaw Trough and the global one, concern mainly the
Late Berriasian through Hauterivian sea-level changes, but only in a few cases, and in the Albian, where the two curves cannot be unequivocally compared because of the sediment type and the lack of stratigraphic data (Fig. 47). All these differences may be due to the fact that the preserved Lower Cretaceous sequences available for study originated in the central part of the sedimentary basin, where reaction to a global sea-level change is much slower. Other factors, such as regional and local tectonics could influence the nature of the sea-level curve in the studied area.

Acknowledgements

This study was supported by State Committee for Scientific Research (KBN) – Individual Project No. 6 P04D 066 18. The authors thank anonymous reviewers for their critical reading of the manuscript and useful comments, leading to a significant improvement of the paper. They also thank Monika Krzeczyńska for computer processing of the illustrations, Karol Sabath for critical reading of the English text and linguistic improvement, and Krzysztof Bąk for editorial remarks.

REFERENCES

This appendix includes all ammonite, foraminifer, ostracod and nannofossil taxa recorded in this study, ranged in alphabetical order according to their generic names.

APPENDIX

This appendix includes all ammonite, foraminiferal, ostracod and nannofossil taxa recorded in this study, ranged in alphabetical order according to their generic names.

Ammonites:
- Deshayesites sp.
- Dichotomites sp.
- Dichotomites crassus Kemper
- Dichotomites evolutus Kemper
- Dichotomites krausei Kemper
- Dichotomites triptychoides Kemper
- *Endemoceras novicuim* (Roemer)

Agglutinated foraminifers:
- *Ammobaculites agglutinans* (d’Orbigny)
- *Ammobaculites coepitaceus* Bartenstein et Brand
- *Ammobaculites hagni* Bhalla et Abbas
- *Ammobaculites inconstans gracilis* (Bartenstein et Brand)
- *Ammobaculites irregulariformis* Bartenstein et Brand
- *Ammobaculites kiyensis* Sztejn
- *Ammodiscus tenuissimus* (Gümbel)
- *Bucirenata condesa* Dulub
- *Bulbohaculites ex. gr. inconstans* Bartenstein et Brand
- *Bulbohaculites inconstans inconstans* (Bartenstein et Brand)
- *Charentia sp.*
- *Choffatella decipiens* Schlumberger
- *Choffatella sp.*
- *Dorothy subtrochus* Bartenstein
- *Everticyclammina aff. gregeri* (Henson)
- *Everticyclammina virgiliana* (Koechlin)
- *Falsogaudiyinella sherlocki* Bettenstaedt
- *Falsogaudiyinella teahyensis* (Bartenstein)
- *Glomospirella galantia* (Berthelin)
- *Hoplophragmoides concavus* (Chapman)
- *Hoplophragmoides cushioni* Loeblich et Tappan

Recurvites sp.
- *Rhabdammina cylindrica* Glaesener
Rhizammina indivisa Brady
Somaticostoecha cf. compressa Gorbatchik
Somaticostoecha cf. rotunda Gorbatchik
Trochammina inflata (Montagu)
Trochamminoides proteus (Karrer)
Vernadina cf. angularis Gorbatchik
Vernadina subminuta Gorbatchik
Vernadina sp.
Vernadinae varonica (Said et Bakarat)
Vernadinae novocomensis (Majtlik)
Vernadinae subuliformis Bartenstein
Vernadinae sp.

Calcereous benthic foraminifers:
Astacolus brouni (Roemer)
Astacolus calliopsis (Reuss)
Astacolus cephalotes (Reuss)
Astacolus humilis (Reuss)
Astacolus proprius Kuznetzova
Astacolus cf. proprius Kuznetzova
Astacolus violii (Dieni et Massari)
Astacolus sp.
Citharina cf. acuminata (Reuss)
Citharina harpa (Roemer)
Citharina orthornota (Roemer)
Citharina pancicosostata (Reuss)
Citharina rudocostata Bartenstein et Brand
Citharina seitzii Bartenstein et Brand
Citharina sparsicosostata (Reuss)
Citharina striatula (Roemer)
Conorboides hafkeri Bartenstein et Brand
Discorbis cf. crinicus Schokhina
Eoguttulina ichnusae (Dieni et Massari)
Eoguttulina sp.
Eoguttulina violutensis Sztejn
Epistoma caracolla (Roemer)
Epistoma cretosa Ten Dam
Epistoma ornata (Roemer)
Frondiculaaria hastata Roemer
Gavelinella barremiana Bettenstaedt
Gavelinella cf. barremiana Bettenstaedt
Gavelinella sp. 1
Gavelinella sp. 2
Globulina prisca Reuss
Gyroidinoides aff. infracretaceus Morozowa
Hechtinga praecantuica Bartenstein et Brand
Laevidentalina communis (d’Orbigny)
Laevidentalina debilis Berthelin
Laevidentalina distincta (Reuss)
Laevidentalina gracilis (d’Orbigny)
Laevidentalina nana (Reuss)
Lageno globosa Montagu
Lageno haueteriviana cylindrica Bartenstein et Brand
Lageno haueteriviana haueteriviana Bartenstein et Brand
Lamorkiniya cf. lamplughi (Scherlock)
Lenticulina eichenbergi (Bartenstein & Brand)
Lenticulina cf. gutta (Ten Dam)
Lenticulina hiermanni Bettenstaedt
Lenticulina macra Gorbatchik
Lenticulina munsteri (Roemer)
Lenticulina neocomiana (Romanowa)
Lenticulina nodosa (Reuss)
Lenticulina cf. nodosa (Reuss)
Lenticulina protodecimaei Dieni et Massari
Lenticulina cf. roemer (Reuss)

Lenticulina saxonica (Bartenstein et Brand)
Lenticulina schreiterei (Eichenberg)
Lenticulina subalata (Reuss)
Lenticulina subangulata (Reuss)
Lenticulina sp.
Marginulina pyramidalis (Koch)
Marginulinae strastocostata (Reuss)
Meandrospira buncii Neagu
Meandrospira washiiensis Loeblich et Tappan
Miliospirella causicasca Antonova
Mironovella juliae (Majtlik)
Nodosaria loeblichae Ten Dam
Nodosaria sp.
Paaalzovella sp.
Plumularia complanata (Reuss)
Plumularia crepidualaris Roemer
Pseudonodosaria humilis (Roemer)
Psilothularella kochii (Roemer)
Psilothularella recta (Reuss)
Saracenaria frankeni Ten Dam
Saracenaria inflata Pathy
Saracenaria valanginiana (Bartenstein et Brand)
Spirillina minima Schaeck
Spirillina sp.
Tristix acutangula (Reuss)
Trocholina alpina (Leupold)
Trocholina burlini Gorbatchik
Trocholina cf. companionella Arnaud-Vanneau
Trocholina infrangulata Noth
Trocholina molestia Gorbatchik
Trocholina pacigramulata Moullade
Vaginulinopsis demudata (Reuss)
Vaginulinopsis reticulosa Ten Dam

Planktonic foraminifers:
Hedbergella infracretacea (Glaessner)

Ostracods:
Asiocythere crassivalvis Kubiatowicz
Asiocythere sp.
Bisculocypris verrucosa (Jones)
Clithocytheridea vonvalensis (Sztejn)
Cypridea inversa Martin
Cypridea obliqua polonica Sztejn
Cypridea peloides peloides Anderson
Cypridea prealta Bielecka
Cypridea tumescens praecursor Oertli
Cypridea tumescens (Anderson)
Cypridea valdensis praecursor Oertli
Cytherella pilicae Kubiatowicz
Cypridea sp.
Cytherella sp.
Cytherelloidea sp.
Damonella pygmaea (Anderson)
Damonella sp.
Darwinula leguminella (Forbes)
Dolocythere punctata Kubiatowicz
Hechticythere hechti (Triebel)
Kileana alata Martin
Kileana kujaviana Bielecka & Sztejn
Paramocythere sp.
Protocythere entremontensis Donze
Protocythere (Mandocythere) frankei Triebel
Protocythere frankei gr. Tripel
Protocythere helvetica Oertli
Calcareaous nannofossils:
Axopodorhabdus alhianus (Black) Wind et Wise
Axopodorhabdus dietzmannii (Reinhardt) Wind et Wise
Bacteriella pruinea (Görka) Black
Bacteriella maritima (Stover) Burnett
Bacteriella signata (Noël) Noël
Calciporina oblongata (Worsley) Thierstein
Chiozygnys littorarius (Görka) Manivit
Chorosphaera rothii (Thierstein) Jakubowski
Corollithon achrylos (Stover) Thierstein
Corollithon signum Stradner
Cretarhabdus conicus Bramlette et Martini
Crucibiscutus minutus (Black) Rutledge et Bown
Crucibiscutus embergeri (Manivit) Thierstein
Cylagelasphaera margeri Noël
Dicaulolithus lehmanni Noël
Diloma gallicense Bergen
Effelliolithus monencaec Crus
Effelliolithus striatus (Black) Applegate et Bergen
Effelliolithus turrissefii (Deflandre) Reinhardt
Effelliolithus windii Applegate et Bergen
Eproolithus antiquus Perch-Nielsen
Eproolithus floralis (Stover) Stover
Farhania varolii (Jakubowski) Varol
Gartnerago numm Thierstein
Gartnerago praebilobatum Jakubowski
Gantriporaria coronadventis (Reinhardt) Grün
Hapitus circumradiatus (Stover) Roth
Hayesites abiensensis Manivit
Helenea chiastos Worsley
Helicotritis trabeoculatus (Görka) Verbeek
Lithraphidites carniolensis Deflandre
Loxolithus armilla (Black) Noël
Manivitella penmanoidea (Deflandre) Thierstein
Micrantholithus bosschelti (Reinhardt) Thierstein
Micrantholithus obtusus Stradner
Nanococos abundans Stradner et Grün
Nanococcos bicerrii Brönnimann
Nanococcos circularis Deres et Achéritéguy
Nanococcos cormita Deres et Achéritéguy
Nanococcos elongatus Brönnimann
Nanococcos globularis Brönnimann
Nanococcos kampneri Brönnimann
Nanococcos minimus Brönnimann
Nanococcos pseudoseptentrionales Rutledge et Bown
Nanococcos steinmanni Kampnner
Nanococcos tritici Brönnimann
Nanococcos vacuonensis Deres et Achéritéguy
Pericellia fenestra (Worsley) Wisc
Perissocyclus plethotretus (Wind et Cépek) Crux
Placozygus blabiformis (Reinhardt) Hoffmann
Polyporhabdus madingleyensis Black
Prediscosphaera colmumata (Stover) Perch-Nielsen
Prediscosphaera cretacea (Arkhangelsky) Gartner
Radiolithus hollandicus Varol
Repagulin parvidentatum (Deflandre et Fert) Forchheimer
Retaccopsis angustiforata Black
Retaccopsis crenulata (Bramlette et Martini) Grün
Retaccopsis wulversii (Deflandre et Fert) Grün
Rhabdobolithites parallellus (Wind et Cépek) Lambert
Rhagodiesus angustus (Stradner) Reinhardt
Rhagodiesus asper (Stradner) Reinhardt
Rhagodiesus dekaenelii Bergen
Rhagodiesus infinitus (Worsley) Applegate et al.
Rolliaplites laffittei (Noël) Noël
Sertibaculina primitivum (Thierstein) Filewicz
Sollustes horticus (Stradner et al.) Cépek et Hay
Speetonia colligata Black
Staurolithites ellipticus (Gartner) Lambert
Staurolithites matterlosi Crux
Staurolithites quadricarcula (Noël) Wilcoxen
Staurolithites stradneri (Rod et al.) Bown
Strandrillithus geometricus (Görka) Bown et Cooper
Strandrillithus rhamnicus (Stradner et Adamik) Bukry
Tegulalithus septentrionales (Stradner) Crux
Tegumentum octiformis (Köthe) Crux
Tegumentum stradneri Thierstein
Tranolithus gabei Bown
Tranolithus orionatus (Reinhardt) Reinhardt
Triquetrorhabdus schetlandensis Perch-Nielsen
Tubidiscus verene Thierstein
Watznaueria barneae (Black) Perch-Nielsen
Watznaueria biporta Bukry
Watznaueria britannica (Stradner) Reinhardt
Watznaueria fossacincta (Black) Bown
Watznaueria ovata Bukry
Zenghabdatus embergeri (Noël) Perch-Nielsen
Zenghabdatus erectus (Deflandre) Reinhardt
Zenghabdatus diprogrammus (Deflandre) Burnett
Zenghabdatus scutula (Bergen) Rutledge et Bown

Streszczenie

BIOSTRATYGRAFIA I STRATYGRAFIA SEKWENCJI KREDY DOLNEJ W POLSCE CENTRALNEJ I POŁUDNIOWO-WSCHODNIEJ

Piotr S. Dziadzio, Elżbieta Gaździcka, Izabela Płoch & Jolanta Sinolej

Wczesnokredowe baseny sedimentacyjne na Nizinę Polską rozwinęły się wzdłuż aktywnej tektonicznie strefy Teisseya'a-Tornquist (Fig. 1A). Ich os, charakteryzująca się zwiększoną subwydymą stanowiła budżta środkowokrajowa. Mobilność podłoża wpływała na przebieg sedymentacji, powodując zróżnicowanie mięśnicy oraz litologii osadów oraz środkowymorzę słoweńcy równocześnie (Hakenberg & Šwiderska, 1998). Położenie paleogeograficzne basenu pomiędzy Tetydą a morzem boralnym powodowało się wpływać na sposób wytworzenia dziś wyższym niż kształt, w którym powstawały materiały. Zasobność metod statygrafii siedzących umożliwiła rekonstrukcję cykli postępno-regresywnych, spowodowanych względna zmiany poziomu morza oraz ujawnienie epizodów aktywności tektonicznej pogranicza platformy wschodnioeuropejskiej oraz brzegów środkowokrajowych.

Badania wykonano na obszarze niecejk warszawskiej i lubelskiej oraz zapałkowiska Poleskiego (Fig. 1), w oparciu o materiały wotorsów: Gostynig IG 1, IG 3, IG 4, Zyhelg IG 3, Łowicz IG 1, Korabiewice PIG 1, Warka IG 1, Białobrzegi IG 1, Bająka IG 1, Piotok IG 1, Narol IG 1, IG 2, Wiewiórka 4 i Za­gorzyc 7. Uzupełniające je danymi z odsłonięć w Wąwalc i Anno­ wermo wiązało się z najniższymi częściami poziomu C. oraz węglowodanowymi zbiornikami.

Celem niniejszej pracy było dokładniejsze niż dotychczas określenie poziomu stratygraficznego poszczególnych serii osado­ wych w dolnej części poziomu E, które na obszarze centralnej Polski oraz dźwiękowymi zbiornikami stanowiły spąg sukcesji węglanowo­żółto-niski. Stanowisko to potwierdzają zespoły mikro­ceras "(Marek, 1997; Marek & Szulgina, 1996), zaliczane do wyższych stratygraficznych." (Fig. 32).

Badania wykonano na obszarze niecejk warszawskiej i lubelskiej oraz zapałkowiska Poleskiego (Fig. 1), w oparciu o materiały wotorsów: Gostynig IG 1, IG 3, IG 4, Zyhelg IG 3, Łowicz IG 1, Korabiewice PIG 1, Warka IG 1, Białobrzegi IG 1, Bająka IG 1, Piotok IG 1, Narol IG 1, IG 2, Wiewiórka 4 i Za­gorzyc 7. Uzupełniające je danymi z odsłonięć w Wąwalc i Anno­ wermo wiązało się z najniższymi częściami poziomu C. oraz węglowodanowymi zbiornikami.

Zasobność metod statygrafii siedzących umożliwiła rekonstrukcję cykli postępno-regresywnych, spowodowanych względna zmiany poziomu morza oraz ujawnienie epizodów aktywności tektonicznej pogranicza platformy wschodnioeuropejskiej oraz brzegów środkowokrajowych.

Badania wykonano na obszarze niecejk warszawskiej i lubelskiej oraz zapałkowiska Poleskiego (Fig. 1), w oparciu o materiały wotorsów: Gostynig IG 1, IG 3, IG 4, Zyhelg IG 3, Łowicz IG 1, Korabiewice PIG 1, Warka IG 1, Białobrzegi IG 1, Bająka IG 1, Piotok IG 1, Narol IG 1, IG 2, Wiewiórka 4 i Za­gorzyc 7. Uzupełniające je danymi z odsłonięć w Wąwalc i Anno­ wermo wiązało się z najniższymi częściami poziomu C. oraz węglowodanowymi zbiornikami.

Zasobność metod statygrafii siedzących umożliwiła rekonstrukcję cykli postępno-regresywnych, spowodowanych względna zmiany poziomu morza oraz ujawnienie epizodów aktywności tektonicznej pogranicza platformy wschodnioeuropejskiej oraz brzegów środkowokrajowych.
W niecze warszawskiej wyróżniono poziom małżoraczkowy z Pro-
tocythere propria emslandensis (Kubiatowicz, 1983). W rejone
nym, w utworach dolnego wałanżyny i niższej części górnego wa-
łanżyny wyróżniono poziom małżoraczkowy P. aubersonis,
natomiast w wyższej części górnego wałanżyny, obejmującej
"warstwy z Dichotmites" – poziom Mandyctythere frankei (Fig.
32).

W utworach beriasu dolnego w niecze warszawskiej stwier-
dzono po raz pierwszy zespół otworne z Verneulina subminuta,
V. angularis i Verneulinae fanaonica (Fig. 14, 32) świadczący
o ingresjach morskich. W beriasie środkowym i górnym występują
liczne i zróżnicowane taksonomicznie zespoły otwornicz
zlepieńcowatych, opisane jako zespół z Trochamina inflata, Ha-
plagromoides concavus i Ammobaculites agglutinans (Fig. 32).

W Polsce południowo-wschodniej, w beriasie górnym (Wiewiórka
4, Zagorzyce 7; Fig. 10, 11) występują otworne zlepieńcowate z
rodziny Litulolidae oraz wapienne z rodzaju Trocholina, charak-
teryzujące się dla osadów platform węglanowych Tetydy. W najniż-
szym wałanżynie niecki warszawskiej, wraz z amonitami z rodza-
jów Neocomites i Neohoploceras, pojawiają się pierwsze bento-
niczne otworne wapienne: Epistomina caracolla (Roemer), Len-
ticulina subhabita (Reuss), Acatulus humilis (Reuss), Lenticulina
munsteri (Roemer) (Fig. 8, 9). W poziomie robustum zaobserwowa-
no zubożenie zespołów otwornic i przewagę form zlepieńcow-
atych. Poziomowi małżoraczkowemu P. aubersonis odpowia-
da sukcesja czterech charakterystycznych zespołów otwornic: 1) zespół z Trochamina inflata, Hap-
plagromoides concavus i Ammobaculites agglutinans, 2) zespół z Epistomina caracolla, Lenticulina
subhabita i Verneulinae neocomiensis, 3) zespół z Glomospirella gaulaina i Ammodiscus trenumius oraz 4) zespół z Epistomina caracolla i Lenticulina subhabita, charakterystyczny
ze poziomu verrucosum wałanżyny górnego (Fig. 32). W niecze
warlszawskiej i tomaszowskiej, powyższej poziomu verrucosum
występują liczne zespoły otwornic wapiennych i zlepieńcowatych,
zwierajace m.in. Lenticulina eichenbergi Bartenstein & Brand.

W prowincji tetydzkiej, w poziomie L. eichen-
bergi (Moulaude, 1984), korylowy z górną częścią poziomu ver-
rucom z dolar częścią poziomu percegrinus. W najwyższym
wałanżynie, wraz z niąm warunków w basenie sedymentacyj-
nym, pojawił się zespół otwornic z Hechtilna praetaeniata Bart-
stein & Brand (Fig. 17G), Protoarmosella hechti (Dieni & Mas-
sar) i P. kemmi (Zedler). W rejonie Dębicy, walańzy dolnym udokumentowano na podstawie zespołu charakteryzującego dla platform węglanowych Tetydy. Stwierdzono tam m.in. obecność: Trocholina burlina Gorbatchik, T. molesta Gorbatchik, T. alpina (Leupold), T. gigantea Gorbatchik & Manzurowo, Lenticulina pro-
todecama Dieni & Massari i Astactus cf. proprius Kuznetzova. W osadach ilastych serii z Dębicy dominują:
nieliczne lenticuliny, epistominy i otwornice zlepieńcowatyc
wapiennych. Poziomowi małżoraczkowemu P. aubersonis zdo-
żono po raz pierwszy zespół otwornic z
rodzaju Gutatella cf. ten Dam, wskazujący na poziom NP 3. Wyżej leżącą sukcesję zaliczono do poziomu PN 4. W najwyższych wałanżynie i dolnym hoterywie niecki warszawskiej wyróżniono poziomy PN 5 Comus-
phaera rothii i PN 6 Eprolithus antiquus. Hoterywy górne, repre-
zentujący poziomy PN 7 Perissocyclus pelchretus i PN 8 Teg-
italinata septiniflorus, udokumentowano w profilach kilku otwo-
rów z niecki warszawskiej. Formację cieszanowską (Narol IG 1, IG 2) zaliczono do hoterywu górnego i barremu dolne-
x – poziom PN 9. W najwyższej części wałanżyny dolnego, wyróżniono poziom PN 9 Tegumentum octiformes, natomiast pozycję stratygraficzną formacji białobrzegowej od PN 9 do PN 13 (Białobrzegi IG 1). Pojawienie się apetiku go-
tunku Eprolithus florals oraz horyzontu licznych występowania
rodzaju Nanomocus (Fig. 24, 25), to ostatnie „zdarzenie” zaobser-
wane poniżej spągu formacji mogileńskiej. Ponowny rozkwit zespołów nanoflor na basenie polskim nastąpił dopiero w póź-
nym albie. W piaskach glaukonitowych z fosforytami (Gostynin
IG 1, Bąkowa IG 1, Annopol) występują liczne i zróżnicowane ze-
spół nanoplanktonu, wskazujące na poziom CC 9 Epi-
theithus striatus, obejmujący najwyższy alb i cenen dolny.

Sekwencje depozycyjne

Duży dystans między analizowanymi otworami, brak pełniw
rdzeniowych profilii, zmienność fazowa oraz niedostateczna ilość
danych biostratigracyjnych utrudniają szczegółowe rozpozio-
mowanie i korelację osadów. Zastosowanie metodyki straty-
graficznej pozwoliło na identyfikację powierzchni o znaczeniu
chronostratygraficznym, takich jak: powierzchnie transgresji (TS),
horizonty maksymalnego zalewu (MFS) i granice sekwen
cji (SB). Umożliwiały one precyzyjne wyznaczenie powiązanych genetycz-
nie traktów depozycyjnych, które powstały pomiędzy dwoma ko-
lejnymi najniższymi stanami względniego poziomu morza (WPM)
(Posamentier et al., 1988), wyznaczające tym samym sekwen
cje (Vaii et al., 1977) lub powstały pomiędzy dwoma kolejnymi wzro-
stami WPM, wyznaczające pasywność (Van Vagoner et al.,
1990). Granice te pozwoliły także na wyróżnienie sekwen
cji geogenetycznych (sensu Galloway, 1989), zawartych między dwoma kolejnymi najwyższymi stanami WPM, odtwarzających stratygra-
ficzny zapis wypełniania basenu. Przebieg granic w badanych ot-
Granicą między tymonem i beriasem ma cechy SB (w znaczeniu eoxonowskim), łączoną z obniżeniem się WPM. Zarówno węglanowo-marglista seria tytonu górnego, jak i węglanowo-ewaporatowe osady beriasu dolnego powstały w skrajnie płytkowodnym środowisku sebby. Stanowią one dwie sekwencje niższego rzędu, obejmując ciąg systemowy niskiego stanu WPM, w którym nastąpiło odcięcie basenu sedymentacyjnego od oceanu. Wyżżególne utwory marglizte z toczelniami ilastymi w spągu wskazują na początek transgresji. Ciąg transgresywny w górnej części beriasu dolnego obejmuje łupki marglizte oraz margle z wkładkami wapieni i poziomami koncentracji drobnoosadkowej fauny. Wielowczy są zamiast czarnych łupków, o wysokich wskazaniach na profilowaniu gamma sugeruje koncentrację osadów, w obrębie której przebiegać może granica zalewu morskiego (FS), odpowiadająca granicy między dolnym a środkowym beriasem (Fig. 43). W niecie lubelskiej, gdzie miąższość beriasu dolnego jest prawie dwukrotnie większa, wydzielono trzy sekwencje niższego rzędu. W zapadlisku przedkarpackim (Fig. 34), spąg beriasu wyznacza granica sekwencji przebijająca w obrębie poziomu ilastego, interpretowanego jako FS, która jest prawie zbliżona z proponowaną wcześniej granicą tytonu i beriasu (Zdanowski et al., 2001). Powyższy granicy FS rozwinięty jest ciąg wysokiego stanu WPM obejmujący berias śródkowy (Fig. 34), w stropie którego wyznaczone granicę kolejnej sekwencji depozycyjnej. Ciągi systemowe niskiego stanu WPM i ciąg transgresywny, obejmujące czarne mułowce i ilowce z liczną fauną, poziomami spirytyzowanych szczątków roślinnych oraz bioturbacjami, zaliczono do beriasu górnego. W interwalu skondensowanym, z konkręciami ilasto-zelazistymi wyznaczono MFS. W niecie lubelskiej (Narol IG 1, IG 2) berias górný wykształcony jest w obszarze węglanowej, zdomowowanej przez wapienie oloowe. W wyniku podniesienia się WPM i zatapiań platforme węglanowej powstały warstwy do intensywnej produkcji węglanów, w tym piasków oloowych. W beriasie wyróżniono zatem dwie pełne sekwencje depozycyjne niższego rzędu oraz trzecią, od granicy środkowego i górnego beriasu, która ma rozwinęто tylko dwa ciągi systemowe – niskiego stanu WPM i transgresywny, zakończony interwałem skondensowanym, w którym przebiega granica MFS (Fig. 34). Każda kolejna sekwencja depozycyjna była w bardziej głębokomorskich warunkach. Sedymentacja w rejonie przedkarpackim odbywała się w warunkach płytowikowych, z tendencją do pogłębiania się.

W walanieżynie dolnym niecki warszawskiej wyróżniono trzy parasekwencje, ograniczone powierzchniami FS (Fig. 34), których zrosty o charakterze progogradacyjnym obejmują ciąg systemów wysokiego stanu WPM. W otworze Korabiewice PIG 1 brak jest walanieżynu i hoterywu dolnego; w otworach Warka IG-1, Biało­brzegi IG-1 i Potok IG-1 mają one zredukowaną miąższość. Walanieżyn dolny w facji wapieni oolitowych, deponowany w warunkach wysokiego stanu WPM. W ciągłości sedymentacyjnej z utworami beriasu wyróżniono trzy sekwencje o charakterze retrogradacyjnym i progogradacyjnym.

W profilu kredy dolnej w analizowanym obszarze wyróżniono jednolitą, która obejmuje prawie cały wyżzon dolny. Powyższy SB w najwyższym walanieżynie zinterpretowano jako niskiego rzędu osady beriasu dolnego, w którym nastąpiło odcięcie basenu sedymentacyjnego od oceanu. W otworze bowiem IG 1 stwierdzono kompleks piaskowcowy znacznej miąższości, który może być wypełnieniem koryta lub doliny szelesowej, więc to w strefie systemowego wysokiego stanu WPM. W stopowej części ciągu systemowego niskiego stanu WPM wyznaczona jest TS, która stanowi zarazem granicę stratygraficzną między walanieżynem a hoterywem. Granica ta ma charakter regionalny i została udokumentowana paleontologicznie w całym obszarze badań (Fig. 43).

Ciąg transgresywny hoterywu dolnego stanowi zbioturbowane łupki ilaste z glaukonitem, fauną cienkoskorupową i oolitami żelazistymi. W hoterywi dolnym wyznaczono dwie granice niższego rzędu, odpowiadające FS i SB. W warstwach stopowych wyznaczono powierzchnię MFS, która oddziela hoterywy dolny i górný. W otworach Karabiewice PIG 1 i Gostynin IG 1 brak jest hoterywu dolnego.

Stratigrafia i sekwencja dolny hoteryw dolny stanowi w niecie warszawskiej zdomowiony przez mułowce, deponowany jako ciąg systemów wysokich (może także niskiego lub transgresywnego) stanu WPM. W zapadlisku przedkarpackim brak jest hoterywu dolnego (Fig. 44). Na krzywych geofizycznych widoczna jest powierzchnia MFS, która odgrywa rolę granicy między hoterywem dolnym i górnym. Granica ta ma charakter regionalny i została wyznaczona w całym obszarze badawczym (Fig. 43).

W konstrukcji twojego przekroju mikroskopowego w niższej części sekwencji depozycyjnej, interpretowane jako MFS, która oddziela hoterywy dolny i górný, w strefie przedkarpackiej stanowi granicę spadkową WPM. Granica ta ma charakter regionalny i została wyznaczona w całym obszarze badawczym (Fig. 43).
ujawniło znaczną podobieństwo obu krzywych, ale także różnice w niektórych intervalach. Granica tytonu i beriasu ma znamienna granicy sekwencji I typu (por. Van Wagener et al., 1990), podobnie jak to proponują Haq et al. (1988). Granica między beriasem dolnym i środkowym odpowiada FS. Autorzy krzywej wzorcowej nie wydzielają beriasu środka, ale w niższej części poziomu odczynia wyznaczają granicę o randze MFS. Berrias środkowy wyznacza zatem FS w spągu i SB w stropie. W późnym beriasie, na krzywej Haq'a obserwuje się dwa wyraźne wahań WPM, co nie znajduje potwierdzenia w analizowanych profilach. Zgodność wykazuje granica beriasu i walanżyny, która w obu przypadkach przypada w miejscu MFS. W walanżynie dolnym, w rejonie Gostynin IG 4 – Łowiec IG 1 (Fig. 33-36) występuje przesadniczy zestaw trzech parasekwencji, z których każda ograniczona jest powierzchniami FS. Zestaw ten tworzy ciąg systemowy wysokiego stanu WPM. Sprostowa granica zestawu ma charakter FS i pokrywa się z granicą, którą wyznaczają Haq et al. (1988), przy czym autorzy ci wyznaczać granicę w sekwencji I typu, co nie znajduje potwierdzenia w analizowanych materiał. Górną walanżyn odpowiada sedymentacji w ciągu systemów wysokiego stanu WPM, podobnie jak na krzywej globalnej i obejmuje sekwencję z granicą I typu i ciągami systemowymi niższego stanu i ciągu transgresywnym.

W całym obszarze badań granica walanżyny i hoterywu (Fig. 43, 44, 47) odpowiada TS w sekwencji I typu, a najniższy hoteryw deponowany był podczas wzrostu WPM. Na krzywej wzorcowej granica ta wypadła w ciągu systemowym wysokiego stanu WPM, a depozycja dwóch sekwencji II typu – w fazie spadku WPM. W najniższej części hoterywu dolnego, w badanych profilach, wydzielono ciąg systemowy niskiego stanu WPM, a więc tylko ciąg systemowy niskiego stanu WPM i ciąg transgresywny w sekwencji II typu. Krzywe nie wykazują zatem zgodności. Granica pomiędzy dolnym a górnym hoterywem w badanym obszarze przypada na MSF, natomiast na krzywej Haq et al. (1988) – odpowiada SB. W hoterywie górnym, na krzywej exxonowskiej wydzielono dwie pełne sekwencje II typu. W niecierpe warszawskiej, niższa część hoterywu górnego to ciągi systemowo wysokiego oraz niskiego stanu WPM i ciąg transgresywny, zewnieszony MFS (na krzywej Hot – FS). Utwory baremu mają charakter progradacyjny i odpowiadają ciągom systemów wysokiego stanu WPM, gdzie z powodu małej małenkorodności trudno zidentyfikować trzy sekwencje II typu, jak to pokazują Haq et al. (1988). Granica baremu i aptu odpowiada SB. Podobna granica o charakterze I typu występuje w niższej części aptu na krzywej wzorcowej. W obu przypadkach w obrębie tego piętra wyróżnić można dwie sekwencje. Brak danych stratigraficznych nie pozwala na wyznaczenie granicy między aptem a albem. Posługując się krzywą exxonowską, na której granica ta odpowiada MFS, w obszarze badań wyznaczone ją między jednostkami depozycyjnymi – retrogradacyjną i progradacyjną, które mogą odpowiadać długoletnim zanikom WPM. Granica albu i cenomanu odpowiada MFS, podobnie jak wyznaczają ją Haq et al. (1988).

Analiza sekwencji depozycyjnych wraz z badaniami stratigraficznymi posłużyły do odtworzenia zjawisk paleotektonicznych na obszarze Niżu Polskiego i w strefie przykarpackiej. W otworze Gostynin IG 1 wykazano obecność luka stratigra ficznej obejmującej niższą część hoterywu górnego, natomiast w otworze Korabiewice PIG 1 brak jest osadów od niższej części dolnego beriasu po hoterywę górny. W otworze Warka IG 1 luka obejmuje niższą część beriasu górnego, walanżyny dolne i niższą część walanżyny górnego oraz większą część albu (przy założeniu poprawnej interpretacji stratigraficznej). W tym też otworze stwierdzono największą redukcję miąższości dolnej o trudnej do wyjaśnienia na tym etapie badań genezie. Luki lub kompensacje stratigra ficzne w walanżynie i hoterywie prawdopodobnie występują również w otworze Białobrzegi IG 1. Otwory Korabiewice PIG 1 i Warka IG 1 znajdowały się prawdopodobnie w obrębie bloku o innym tempie subsydencji. W otworze Potok IG 1 obserwuje się znaczną redukcję miąższości beriasu i walanżyny dolnej i luku stratigra ficznego powyżej walanżyny górnego aż do cenomanu. W południowej części niecki lubelskiej na aktywność tektoniczną w późnym hoterywie wskazuje brak osadów tego wieku i powierzchniczycie erozji, rozpoznane w rdzeniach wiertniczych. Największa jednak luka stratigra ficzna obejmuje utwory między baremem i cenomanem. Nie jest jednak jasne czy utwory aptu i albu nie występują w tym obszarze, jak to ma miejsce w rejonie Zagorzyce. Tam też udokumentowano luka stratigra ficzną między dolnym i górnym beriasem oraz walanżyn dolnym i baremem (‘granicą aptu i albu (Wiewiórka 4, Fig. 40). Luki te mogą być wynikiem erozji na znacznych obszarach od południowej lubelszcz-chynzy po przełęcz Karpata, spowodowanej wydźwignięciem tego obszaru.

Zależność zmian WPM od tektoniki (subsydencji tektonicznej) na obszarze Niżu Polskiego wymaga dalszych badań. Na wczesną kredę przypada jedna z faz ekstensji, jakiej podlegała bruzda środkowopolska (Kutek, 2001). Sedymentacja odbywała się w warunkach dużych zmian WPM, związanych z globalnymi wahańiami poziomu morza, na które należały się lokalna i regionalna tektonika blokowa. W południowej części badanego obszaru, wolniejsza subsydencja i brak przestrzeni akomodacyjnej były przyczyną mniejszej miąższości poszczególnych pięter. W rejonie tym aktywność tektoniczna mogła mieć miejsce w wyższej części wczesnej kredy.