THE APTIAN STRATIGRAPHY OF SOUTHERN TUARKYR
(NW TURKMENISTAN, CENTRAL ASIA)

FABRIZIO CECCA 1, ANNIE V. DHOND'T 2 & TAMARA N. BOGDANOVA 3

Received March 15, 1999; accepted June 20, 1999

Key-words: Ammonoidae, Bivalvia, Biostratigraphy, Cretaceous, Aptian, Central Asia, Turkmenistan.

Abstract. The ammonite successions of Turkmenistan, particularly those of the Greater Balkhan and Tuarkyr areas, are considered references for the Aptian Stage. Six sections across the uppermost Barremian - basal Upper Aptian interval were studied in the Tuarkyr desert in October 1997, and ammonites and bivalves were collected. Data are compared with those from a section sampled by a Russian team in 1959. The stratigraphic distribution of the faunas in the sections is discontinuous, as the fossiliferous levels intercalate with terrigenous sediments. The ammonite faunas, at least in the intervals sampled, show low diversity and are dominated by the genus Deshayesites in the lower Aptian and the genus Epicheloniceras, associated with the less common Caspiosterites, in the basal upper Aptian. The Turkmenian sections contain species present also in the Caucasus, England, Germany, France and Switzerland, indicating that the Turkmenian faunas reflect impoverishment rather than geographic isolation. The chronologic equivalence between the Turkmenian Epicheloniceras subnodosocostatum Zone and the Epicheloniceras martinioides Zone in England seems questionable because the Epicheloniceras-bearing beds of the Tuarkyr correspond to the upper part of the E. martinioides Zone, i.e. the Epicheloniceras buxtorfi Subzone. The bivalve fauna consists mainly of pteriids, Exogyrinae oysters and trigoniids. These groups undoubtedly indicate a very shallow, fairly warm and fully marine environment, typical of the Teriyian Lower Cretaceous. The heterodonts are too rare to give further bathymetric indications. None of the taxa indicate deep burrowing and all are assumed to be very littoral. The bivalve fauna shows strong affinities with that of the English Lower Greensand.

Introduction.

During October 1997 one of the authors (F.C.) carried out a survey of the Aptian succession in the southern Tuarkyr area (northwestern Turkmenistan, Fig. 1).

The Aptian successions of Turkmenistan were studied in detail during the '60s and '70s by Soviet teams, especially in the Greater Balkhan and in the Tuarkyr area. Several publications have been devoted to geologic and stratigraphic themes (Resolution of the Interdepartmental Stratigraphic Commission, Samarkand, 1977; The stratigraphy of the USSR, 1986; Bogdanova & Tovbina 1995; Bogdanova et al., 1989; Preobrazhensky, 1990; Prozorovsky, 1990; Tashliev & Tovbina, 1992) and to ammonite palaeontology (Tovbina, 1963; Bogdanova, 1971a, b, 1977, 1978, 1979, 1983, 1991; Kakabadze et al., 1978).

The last subject is particularly important because the ammonite succession of Turkmenistan is considered a reference for the Barremian - Aptian boundary. In fact, the Working Group on Lower Cretaceous Cephalopods
(Hoedemaeker & Bulot, 1990; Hoedemaeker & Company, 1993; Hoedemaeker & Cecca, 1995) retained for the zonation of the Mediterranean area the *Deshayesites tuarkyricus* Zone, which was defined in Turkmenistan as the basal ammonite zone of the Aptian (Bogdanova, 1971a). The topmost ammonite Zone of the Barremian in Turkmenistan, the *Turkmeniceras turkmenicum* Zone, was proposed as a horizon in the first version of the Mediterranean zonation (Hoedemaeker & Bulot, 1990).

Bogdanova & Tovbina (1995) and Bogdanova & Lobacheva (1995) proposed the Greater Balkhan area as the type-region for the selection of the stratotype of the Aptian boundary.

However, the Working Group on the Aptian stage (Erba, 1996) did not take into account the Turkmenian sections because, according to the standards normally required for stratotype definitions, no sufficient biosтратigraphic information was available at the time. Despite the numerous palaeontologic papers on ammonites, no detailed stratigraphic logs of the Turkmenian sections were published and no further information was available, except for faunal lists and general lithologic characteristics of the sections. The stratigraphic data reported by Bogdanova (1971a) gave the impression of a discontinuous distribution of the faunas in the Turkmenian sections.

The expedition in the southern Tuarkyr region was undertaken to clarify the precise stratigraphic distribution of the numerous Turkmenian ammonite species and to provide a detailed description of sections.

Geologic setting and localities studied.

The Tuarkyr area is located in NW Turkmenistan (Fig. 1), east of the Karabogaz Gol. It is characterized by an anticline striking NW-SE with a Permo-Triassic core. A smaller anticline (Fig. 2) with a Jurassic core surrounded by Lower Cretaceous formations is present south of the periclinal closing of the anticline.

The general stratigraphic features of the pre-Aptian Lower Cretaceous succession, as described in the Resolution of the Samarkand Congress (Interdepartmental Stratigraphic Commission, 1977), are from top to bottom:

- **interval d)** sandstones and siltites with intercalations of shales and limestones containing ammonites (*Turkmeniceras, Matheronites*) and bivalves; 25-35 m. Uppermost Barremian;
- **interval c)** siltites and shales with intercalated shelly bioclastic levels. The most common fossils are bivalves (*Gervillia*, trigoniids etc.), although ammonites of the *Imerites giraudi* Zone (*Colchidites gr. colchicus*, *Imerites favrei*, *I. giraudi*) have been reported (Tovbina, 1963; Bogdanova, 1971a); 20-40 m. Upper Barremian;
- **interval b)** calcarenites and intercalated marls and shales, with abundant oribitolinids, bivalves (exogyrine oysters) and brachiopods; 12-50 m. Hauterivian - Barremian;
- **interval a)** dolostones and limestones with intercalated shaly levels overlying unconformably Callovian strata; bivalves (exogyrine oysters) indicative of a shallow marine environment are the most common fossils; about 60 m. Hauterivian.

Prosorovsky (1990) included intervals a) and b) in the Urgonian facies though transitional facies to continental deposits occur in the southern Tuarkyr. Intervals c) and d) form the second Urgonian cycle described by Preobrazhensky (1990) and represent a marine regression pre-dating the major deepening of the basin that led...
to the deposition of the Lower Aptian shaly succession

It is worth noting that the succession of the southern Tuarkyr studied in the present paper shows the characteristics that in Prosorovsky's (1990, fig. 2) stratigraphic scheme define his "Cubadag foredeep" more than the "Tuarkyr anteclise", the latter probably referring to the northern Tuarkyr and not to the area studied in the present paper.

Description of the stratigraphic sections.

Six sections were studied near the village of Geokdere (Fig. 2, 3):

1 - SW Mount Bishik, starting 13 km south of Geokdere;
2 - NE flank of Mount Bishik, 8 km south of Geokdere;
3 - Tekedjik 1, located in a canyon 4.5 km east of Geokdere;
4 - Tekedjik 2, 4 km east northeast of Geokdere;
5 - S Mount Hanbegiiburun, 3.5 km northeast of Geokdere;
6 - Mount Hanbegiiburun, 3 km north northeast of Geokdere.

The fossils mentioned in the descriptions of the sections were collected during the expedition carried out in October 1997.

Another section ("Geokdere"), almost 12 km north northeast of Geokdere, was sampled by one of the authors (T. N. B.) in 1959 and the most relevant data are compared with those obtained from Sections 1-6.

We must stress that despite the absence of vegetation, the shaly intervals are often covered by relatively thick (0.50 - 1 m) colluvial material. This masks the real succession and only the more calcareous, harder, beds are exposed.

All sections are described below from bottom to top.

Section 1 - This section was logged and sampled about 2 km SW of the westernmost edge of the ridge called Mount Bishik (Fig. 2). The base of this section (Fig. 3) may correspond to the top of the Urgonian facies sensu Prosorovsky (1990). Older beds crop out in the canyons located 2-3 km south of the southern flank of Mount Bishik.

Upper Barremian.

Top of the Urgonian facies - Arenaceous limestone with orbitolinids and the bivalve Ceratostreon tuberculiferum (Koch & Dunker).

Layer 1 - bioclastic calcareous sandstone, capped by a thin horizon containing numerous internal molds of bivalves: Cacullaeas sp., Trigonia carinata Agassiz s.l., ? Resatrix (Vectorbis) vectensis (Forbes); 1 m

- siltstone. 2 m

Layer 2 - thin level with ? Ceratostreon;

- grey siltstone; the brachiopods Belbekella multiformis ? (Roemer) and an unidentified terebratulid were found 0.30 m below the top. 1.5 m

Layer 3 - laminated sandstone with fragments of molluscs; 0.20 m

- grey siltstone with intercalation of numerous, ferruginous, hard surfaces; echinoids referable to Txaster cf. retius (Lamark) (sample SWG 3bis) at the very base; on top, "Cardium" aff. cottaaliniun d'Orbigny and
very abundant specimens of the brachiopods *Belbekella bertheloti* (Kilian), *Selliithrys* sp.; 3.5 m
- siltstone. 4.5 m

Layer 4 - thin bivalve-rich level;
- siltstone. 1.5 m

Layer 5 - yellowish sandstone with intercalations of grey siltstone and/or finer poorly cemented sandstone; an oolitic level with fragments of molluscs on top; 8 m
- grey shale. 3.5 m

Layer 6 - composite level. From the bottom: (6a) layer of white, micritic nodules (15-25 cm long and 5-10 cm thick) dispersed in the shale; (6b) 1 m of shale capped by a hard, ferruginous surface; (6c) 1 m of shale; (6d) 7 cm thick bed of a white, micritic limestone; (6e) 0.5 m of shale capped by a thin level with the bivalves *Gervillaria daeofenis* (J. Sowerby), *Gervillella sublanceolata* (d'Orbigny), *Ceratostreon tuberculiferum* (Koch & Dunker) and gastropod specimens of *Confusiscolana rhodani* (Pictet & Roux) (identified by V. A. Kotkov); 2.80 m thick
- shale. 4 m

Lower Aptian, *Deshayesites tuarikyrus* Zone.

Layer 7 - bed of hard sandstone 0.30 m thick, overlain by 0.20 m of a bioclastic, oolitic level with fragments of molluscs, echinoids, corals, the ammonites *Deshayesites antiquus* Bogdanova and *Deshayesites* sp. and the bivalve *Iotrigonia* abidi (Anthula);
- shale. 0.5 m

Layer 8 - bed of sandstone, 0.20 m thick, overlain by a 0.20 m thick level with intraclasts, trigmioids, *Deshayesites* sp.;
- shale (1 m) capped by a hard, ferruginous surface;
- shale. 1.5 m

Layer 9 - oolitic sandstone with intraclasts, fragments of small bivalves, rhyconoolids, *Deshayesites* cf. *antiquus* Bogdanova; 0.30 m.
- yellowish siltstone. 0.5 m

Layer 10 - laminated sandstone, pinching out laterally. 0.20 m.

Sampling was terminated about 150 m before the foot of the cliff of Mount Bishik due to unfavourable outcrop conditions and was continued laterally 200 m north, just at the base of the slope of the westernmost edge of M. Bishik, starting from Layer 9.

Layer 9 - oolitic sandstone with fragments of bivalves, rhyconoolids; just a few centimetres below *Deshayesites tuarikyrus* Bogdanova and the nautiloid *Cymatoceras pseudoelegans* (d'Orbigny) were found; 0.20 m.
- yellowish siltstone. 1.80 m

Layer 10 - sandstone containing oolites and mollusc debris; 0.20 cm.
- grey shale. 5 m

Lower Aptian, *Deshayesites weissi* Zone.

Layer 11 - hard, ferruginous sandstone; 0.15 m.
- yellowish silt shale. 17 m

Layer 12 - Bed of grey marl, 0.15 cm thick, with abundant *Deshayesites* specimens, unidentifiable bivalves, numerous gastropod specimens of the genus *Nummocalar* (identified by M. A. Golovinova) and fragments of echinoid spines, followed by a bed of arenaceous limestone, 0.20 cm thick, whose upper surface is crowded by ammonites: *Deshayesites aff. deshayesi* (Leymerie), *D. luppovi* Bogdanova, *D. cf. spatbi* Casey, *D. cf. kiliani* Casey, *D. cf. evolvens* Luppov; as numbers on the right side correspond to sample numbers.

- grey shales, 2.5 m thick, capped by a hard, arenaceous, ferruginous bed 0.10 m thick;
- grey shales, 2 m, capped with a bioturbated, hard, arenaceous surface;
- grey shales. About 2.5-3 m

Layer 13 - 0.30 to 0.70 m of laminated sandstone forming globular bodies laterally: this level was followed on the flank of the mountain and corresponds to Layer 11 of Section 2;
- shale with belemnites and *Deshayesites pappi* Bogdanova on top. 6 m

Layer 14 - Marls with calcareous, glauconite-coated nodules containing rare fragments of bivalves. This Layer continues in Section 2, where it has been named Layer 10.

Section 2 - This section was studied on the northwestern flank of Mount Bishik (Fig. 2, 3). Its base corresponds to the shales at the foot of the cliff.

Lower Aptic, *Deshayesites weissi* Zone.

Layer 16 - limestone bed; 0.20 m.
- grey shale. 3 m

Layer 15 - ferruginous sandstone; 0.15 m.
- shales and siltstones in the upper part; 7 m
A specimen of *Deshayesites similis* Bogdanova was collected from the talus, but it origi-
nated from the interval between the top of Layer 16 and 4 metres above Layer 15.

Layer 14 - ferruginous sandstone; 0.15 m.
- shales. 3.5 m.

Layer 13 - Bed of grey marly limestone; 0.10-0.15 m.
- grey shale; a deshayesitid ammonite was collected from the talus. 4.5 m.

Layer 12 - Bed of grey marly limestone containing rare fragments of bivalves; 0.10-0.20 m.
- grey shale. 5.5 m.

Layer 11 - Globular bodies of sandstone (diameter of about 0.5 m) resting upon 0.20 m of a sandstone bed containing rare, small bivalves (mainly oysters); this Layer continues laterally in Section 1, where it was designated as Layer 13.
- grey shale. 6 m.

Layer 10 - Marl over lain by calcareous, glauconite-coated nodules containing rare fragments of bivalves. This Layer continues in Section 1, where it was named Layer 14.
- shale; 3 m.
- fine poorly cemented sandstone. 3 m.

A 41 m thick succession of siltstones and bioturbated sandstones follows (Fig. 3). Thalassinoides was observed in Layer 5 and Layer 4; it is associated with Skolithos in the siltstone above Layer 4.

Upper Aptian, **Epicheloniceras subnodosocostatum** Zone

Layer 3 - hard, bioturbated (Skolithos and Thalassinoides) sandstone, tending to form globular bodies; 1 m.
- yellow siltstone. 2 m.

Layer 2 - fossil-rich, arenaceous Layer containing numerous bivalves including Aetostreon latisimun (Lamarck), Litschkotrigonina inguschensis (Renngarten), Pterotrigonia ornata (d’Orbigny), the gastropod Pleurotomaria sp., the nautiloid Cymatoceras pseudoeglanus (d’Orbigny) and the ammonites Epicheloniceras gr. tschernyschewi (Sinzow), E. cf. tschernyschewi, E. tschernyschewi var. minuta (Sinzow), E. cf. subnodosocostatum (Sinzow); 0.60 m.
- silty sandstone. 1 m.

Layer 1 - ferruginous, arenaceous concretions forming a flat morphology below the top of Mount Bishik; 0.5 m.
- shale (not studied). more than 20 m.

Section 3 - Tekedjik

- This section is exposed 4 km east of Geokdere, in a E-W canyon cutting through the northernmost part of the Tekedjik ridge (Fig. 2, 3). Its base consists of siltstones and shales cropping out at the foot of the ridge.

Upper Aptian, **Epicheloniceras subnodosocostatum** Zone

Layer 1 - ferruginous stratified sandstone with fragments of body chambers of Epicheloniceras; 0.5 m.
- sandstone. 1 m.

Layer 2 - thin, stratified, ferruginous, bioturbated sandstone with Epicheloniceras tschernyschewi var. minuta (Sinzow); 0.80 m.
- sandstone; 0.60 m.

Layer 3 - stratified ferruginous sandstone with Caspianites cf. tuarkynensis Kakabadze, Epicheloniceras cf. tschernyschewi var. minuta? (Sinzow). 0.60 m.
- sandstones and stratified ferruginous sandstones (Fig. 3). 10 m.

Layer 7 - stratified ferruginous sandstone with Epicheloniceras cf. bixtorfi (Jacob); Caspianites tuarkynensis Kakabadze was collected from the talus but it probably originated from the overlying Layer 8b; 0.5 m.
- sandstone. 3 m.

Layer 8 - Composite fossil-rich level. 3 m. From the bottom:
- 8a, layer of hard sandstone, containing fragments of oysters and small specimens of Epicheloniceras, 0.70 m, capped by a thin shelly horizon with fragments of small bivalves;
- 8b, sandstone with giant, resedimented and reelaborated (both terms sensu Fernandez Lopez, 1991) ammonite specimens of Epicheloniceras gr. tschernyschewi (Sinzow) which are concentrated at the base and E. subnodosocostatum var. robusta (Sinzow); 0.70 m. This deposit is discontinuously overlain by a lenticular bioclastic, bivalve-rich Layer with Gersvillella sublanceolata (d’Orbigny), Aetostreon latisimun (Lamarck), Litschkotrigonina inguschensis (Renngarten), Pterotrigonia ornata (d’Orbigny), Thetis minor (J. de C. Sowerby), “Astarte” karajmanica Prossorovski, unidentified pectinids and heterodonts, Belbekella sp. and wood debris; vertical fossil traces (Skolithos?) are visible in the upper part;
- 8c, hard, bioturbated sandstone, with bivalve fragments. 1.60 m.
- sandstone; 1 m.
- stratified ferruginous sandstone; 0.5 m.
- grey shales, mainly covered by colluvium; 35 m. Under this cover, 6 m above the arenaceous concretions millimetric, black-white marly alternances overlain by a bed of marly limestone, 0.20 m thick, were observed.
- thick monospecific coquina with Aetostreon latisimun (Lamarck); 1.5 m.
- grey to yellowish siltstones. 6 m.
Layer 10 - thick monospecific coquina with oyster shells (not sampled); 0.5 m.
- siltstones (not studied). about 50 m.

Section 4 - Tekedjik 2 - This section is located about 1 km north of Section 3 (Fig. 2) and it shows a similar succession. Thus, the same Layer-numbering was used. The section starts with the equivalent of Layer 3 of Section 3 (Fig. 3).

Upper Aptian, *Epicheloniceras subnodosocostatum* Zone
Layer 3 - stratified ferruginous sandstone with the ammonite *Epicheloniceras* gr. *tschernyschevii* (Sinzow). 0.60 m.
An 11 m thick succession of sandstones and stratified ferruginous sandstones follows (Fig. 3).

Layer 8 - In this section, this Layer is 2.4 m thick. From bottom to top:
layer 8a shows the same characteristics as in Section 3;
8b, sands with the same fossil content of Section 3 plus the bivalves *Aetostreon latissimum* (Lamarck) and "Astarte" *karajmanica* Prosorovsky; 0.60 m.
8c, hard, bioturbated sandstone; 0.90 m.
- grey shale. about 30 m.
Layer 9 - monospecific coquina with *Aetostreon latissi-
mum* (Lamarck); 0.7 m.
- fine siltstone. 6 m.
Layer 10 - monospecific coquina with oyster shells. 0.5 m.

Remarks on Layer 8 in Sections 3 and 4.

This composite level is characterized by the presence of giant *Epicheloniceras* gr. *tschernyschevii* (Sinzow) resembling the largest specimens illustrated by Nikchitch (1915). It must be stressed that the collection of ammonites from Layer 8 in both Sections 3 and 4 had to be limited for practical reasons. The preservation of the specimens from this Layer (and its lateral equivalents) is not satisfactory, because the young whorls are poorly preserved or absent. The characteristics of the young whorls are necessary for species identification (Casey, 1960-80) and in the future a more detailed palaeontological study of these giant forms of *Epicheloniceras* should be based on larger collections, seeking with care specimens with better preserved inner whorls.

The faunal content as well as the taphonomic characteristics, indicate that high energy was required to transport and break the bivalve shells in layer 8a. However, even higher energy is necessary to explain the re-elaboration of the giant (40-45 cm diameter) specimens of *Epicheloniceras*. The term re-elaboration (or taphonomic reworking), meaning the exhumation and dis-
placement of previously buried preserved elements, is used here according to Fernandez Lopez (1991). Generally, these specimens are incomplete with the body-chamber missing. Fragments of body-chambers of specimens that probably reached a diameter of 50-55 cm are common in layer 8b. We observed oysters attached to both sides of some of these ammonite specimens (Fig. 4, 5). However, the hypothesis that encrustation occurred during both the life-cycle (Seilacher, 1960; Donovan, 1989) and post-mortem floating of the empty shell may be excluded since oysters settled also on the corners of the broken shell (Fig. 4). This observation also excludes Cope’s (1968) hypothesis of encrustation of the undersurface of dead ammonites which were resting on the substrate.

Due to the weight of such large specimens, the energy necessary for re-elaboration was very high. Figs. 4 and 5 show these characteristics on a smaller fragment from a specimen of *Epicheloniceras cf. tschernyschewi* that we could transport from the field.

The succession of the different taphonomic phases can be summarized as follows:

1) accumulation of the fragmented ammonite shells on the bottom;
2) bivalves' settlement;
3) burying of ammonite shells;
4) compaction and beginning of lithification of the ammonite's internal mold;
5) re-exhumation and overturning of the ammonite shells;
6) erosion of the other face followed by encrustation of a second oyster community.

It is worth noting that trigoniids are not broken and the two valves are often connected. Therefore they are not reworked.

Section 5 - This short section connects Section 4 and Section 6 and it was logged about 1.5 km south of the latter (Fig. 2, 3).

Upper Aptian, Epicheloniceras subnodosocostatum Zone

- **Layer 7** - reddish, stratified ferruginous sandstone; this Layer was followed for 1.5 km and corresponds to Layer 7 of Section 6; 0.30 m. - poorly cemented sandstone. 1 m.
- **Layer 8** - hard, ferruginous, bioturbated sandstone with giant *Epicheloniceras* spp.; 2 m. - poorly cemented sandstone. 12 m.
- **Layer 9** - monospecific coquina with *Aetostreon latissimum* (Lamarck); it is the lateral continuation of Layer 9 of section 4; 0.5 m. - fine, poorly cemented sandstone. 6 m.
- **Layer 10** - oyster coquina (lateral continuation of Layer 10 of Section 4); 0.5 m. - fine, poorly cemented sandstone to siltstone. 6 m.
- **Layer 11** - hard sandstone. 0.5 m.
Section 6 - This section was logged 1.5 km north of Section 5 and corresponds to the cliff of Mount Hangebiiburun, whose top is at 283 m (Fig. 2). The base of the section corresponds to siltstones and shales at the foot of the cliff (Fig. 3).

- sandstone; 0.30 cm.
- grey to yellowish shale. 10 m.

Layer 1 - marl overlain by calcareous, glauconitic nodules containing some rare fragments of ? Limaria aff. parallela (J. Sowerby), Thetis minor (J. de C. Sowerby) and brachiopods; 0.70 m.
A 21 m thick succession of shales and marls follows (Fig. 3).

Layer 5 - bed of arenaceous pebbles containing fragments of bivalves (trigonids, pectinaceans) overlain by large oysters; 0.20 m.
- shale. 19 m.

Layer 6 - sandstones with fine debris of mollusc shells, capped by a hard ground with Thalassinoides; 1 m.
- yellowish, fine poorly cemented sandstone. 17 m.

Layer 7 - reddish, stratified ferruginous sandstone that was followed for 1.5 km up to Section 5. 0.30 m.

Section "Geokdere" - In 1959 one of the authors (T. N. B.) sampled a section located about 10 km north of Section 6 (indicated with "T" in Fig. 2), which was called "Geokdere". This section provides complementary information because upper Barremian ammonitiferous beds were discovered. Some significant ammonites are reproduced in Fig. 6.

The ammonites Imerites favrei Rouchadze and Imerites giraudi var. multicoastata Tovbina were found in Layer 1, a 0.10 m thick bioclastic layer belonging to the Imerites and Colchidites beds, that can be correlated to the Imerites giraudi Zone of the Mediterranean zonation (Hoedemaeker & Company, 1993).

Layer 1 is overlain by 6.6 m of poorly cemented sandstone.

Layer 4 is also a 0.20 m thick, bioclastic layer in which Turkmeniceras geokderense Tovbina (Fig. 6 E, F), T. turkmenicum Tovbina, T. multicoastatum Tovbina and T. rarecostatum Bogdanova were found. This assemblage indicates the Turkmeniceras turkmenicum Zone, which is currently ascribed to the uppermost Barremian (Bogdanova & Tovbina, 1995), although no direct correlations with the Mediterranean areas exist. In fact, Turkmeniceras is reported only in Turkmenia and Caucasus and is not associated with other taxa that could allow correlations.

About 22 m of poorly cemented sandstone follow, capped by bioclastic Layer 9, 0.40 m thick. It contains Deshayesites tuarkyricus (Fig. 6 C, D), D. weissiformis Bogdanova, D. aff. antiquus (Fig. 6 A, B) and D. sp. This assemblage clearly indicates the Early Aptian D. tuarkyricus Zone.
It is followed by 5.4 m of silty, poorly cemented sandstone that is overlain by bioclastic Layer 11 which also contains ammonites of the D. tuarkyricus Zone: D. tuarkyricus, D. antiquus, D. sp.

Layer 12 is overlain by 13 m of sandstone, followed by 10 m of silty clay, 5.5 m of clayey sandstone and 17 m of clay and silty clay. This in turn is overlain by arenaceous, bioclastic Layer 18 which in ammonites of the D. weissi Zone were found (D. weissi, D. consobrinus (d'Orbigny) sensu Bogdanova (1983) and D. deshayesi). This last Layer is overlain by 8 m of siltsone and clayey siltstone, tentatively ascribed to the D. deshayesi Zone. The marker Layer with calcareous, glauconite coated nodules then occurs (Layer 20). This marker Layer was recognized as Layer 14 in Section 1, Layer 10 in Section 2 and Layer 1 in Section 6. Interestingly, in the "GeoKdere" section the marker Layer is overlain by 4.7 m of poorly cemented sandstone which contain ammonites of the Dufrenoya furcata Zone at the top: Dufrenoya dufrenoiyi (d'Orbigny), D. fursovae Bogdanova, Cheloniceras cornuelianum (d'Orbigny), C. cornuelianum var. pygmaea Nikitchit, C. seminodosum (Sinzow), C. meyendorfi (d'Orbigny) and Ancylocerass rochi Casey.

The section continues with more than 70 metres of clay, sandstone and siltsone with only two fossiliferous bivalve beds. It is worth noting that in this section no lateral equivalents of the Epichelonicerass beds (e.g. Layer 8 in Sections 3 and 4) and coquinas with Aetostreon latissimum (Layers 9 and 10 of sections 3 and 4) exist.

Bivalve fauna.

Bivalve faunas from these regions were studied previously by Bogdanova (1961; 1966) and Prosorovsky (in Prosorovsky et al., 1961).

The bivalve faunule studied was poorly preserved with the heterodont taxa particularly difficult to identify at the species level.

The fauna studied herein consists mainly of Bakevelliidae [Gervillaria alaeformis (J. Sowerby) and Gervillaea sublanceolata (d'Orbigny)], of exogyrine oysters [Aetostreon latissimum (Lamarck) and Ceratostreon taberculifera (Koch & Dunker)] and of Trigonidae (Trigonia carinata s.l., "Iotrigonia" abichi (Anhula), Lithchetotrigonia inguschenis (Rennrden) and Pterotrigonia ornata (d'Orbigny)).

Furthermore, one unidentified Cucullaea sp., one limid (? Limaria aff. parallela (J. Sowerby)), one large astarid ("Astarte" karajmanica Prosorovsky), one possible mactromyid [Thetis minor (J. de C. Sowerby)], one cardiid ("Cardium" aff. cottaedunum d'Orbigny) and a few other heterodonts, mainly unidentified, were found.

Palaeoecological considerations - The taxa identified at species level indicate a shallow, fairly warm and fully marine environment, typical for the Tethyan Lower Cretaceous (Dhondt & Dieni, 1989; Dhondt, 1992).

The trigoniids were sometimes found with both valves and can be assumed to have been collected in life position. If Stanley's interpretation for such trigoniids (Stanley, 1977; 1978) is followed, they lived in "nearshore habitats of Early Cretaceous Tethyan seas, at water depths no greater than 10 - 15 m" (Stanley, 1978).

Bakevelliidae specimens were also found occasionally with both valves. Bakevelliidae were suspension-feeders and were assumed to be byssate epifaunal forms (Muster, 1995, p. 6, p. 98). However, Muster, in her discussion of the life position in several bakevelliid genera (1995, p. 98-99) considered Gervillaria alaeformis as byssally attached to a hard particle in the sediment, but with the umbonal valve partially sunken into the sediment - making the taxon close to being a recliner. For the genus Gervillala she suggested a mudsticker life position (see also Fürsich, 1977; Seilacher, 1984); shells of Gervillaea sublanceolata would thus have spent most of their life sticking in the sediment (see also Stanley, 1972, p. 187, fig. 19 C).

Exogyrine oysters are epifaunal recyclers (cup shaped recyclers in Seilacher, 1984) or cemented forms. The large Aetostreon latissimum was certainly a recliner, commonly with oyster spat on the convex valve. The fairly small Ceratostreon tuberculiferum can be considered an opportunistic species, [as Nanogyra virgula in the uppermost Jurassic (Fürsich, 1977)].

Trigonids are very shallow burrowers (Stanley, 1978). None of the other taxa known from Tuarkyr indicate deep burrowing. Even "Astarte" karajmanica was probably a shallow burrower [for recent, smaller Astarte taxa Stanley (1970) indicates a preference for sand - both fine and coarse - and a maximum depth of 35 m].

Most taxa collected from Tuarkyr were typical for sandy, often fairly coarse substrata.

If we consider the distribution of the fauna, in the basal Aptian (Section 1, Layers 7 and 10, samples SWG 7, 10) and in the Lower Aptian (Section 6, Layer 1, sample H1) only a few taxa were identified because of both poor preservation and low frequency. Definitive conclusions are difficult to draw on the basis of the relatively small faunal sample available. The complete absence of trigoniids in sample H1 may be considered an indication that in this bed ? Limaria aff. parallela and Thetis minor lived in less shallow environments than the faunas from the Upper Barremian or Upper Aptian.

Palaeobiogeographic considerations - Some of the taxa had a very wide tethyan distribution (the bakevelliids and the oysters, and two of the trigoniids are found from the west coast of South America to Central Asia, and Gervillaria alaeformis even reached Japan) (Dhondt & Dieni, 1988). Two trigoniids [Lithchetotrigonia...
The Aptian Stratigraphy of NW Turkmenistan

Isle of Wight Levels 0-6

Aptian Barremian

Sections 1

Lower Section 1

Upper Section 1

Barremian Aptian

Levels 7-12

Basal

Sections 6

Upper Section 6

Lower Section 6

Aptian

Sections 3,4

Upper Section 3,4

Level 8

Upper Section 2

Level 2

Sections 3,5

Upper Section 3,5

Level 9

Upper Aptian

Upper Aptian

Gervillaria alaeformis

+

+

Gervillella sublanceolata

+

+

? Limaria of parallela

+

+

Aetostreon latissimum

+

+

Ceratostreon tuberculiferum

+

+

Trigonia carinata

+

+

"Iostrigonia" abichi

+

+

Litschkotrigonia inguschensis

+

+

Pterotrigonia ornata

+

+

Thetis minor

+

+

Astarte karajmanica

+

+

Cardium aff. cottaldinum

+

+

? Resatrix vectensis

+

+

Gervillaria alaeformis +

Gervillella sublanceolata +

? Limaria of parallela +

Aetostreon latissimum +

Ceratostreon tuberculiferum +

Trigonia carinata +

"Iostrigonia" abichi +

Litschkotrigonia inguschensis +

Pterotrigonia ornata +

Thetis minor +

Astarte karajmanica +

Cardium aff. cottaldinum +

? Resatrix vectensis +

Tab 1 - Comparison between Aptian bivalve faunas from the Isle of Wight and those from Tuarkyr.

inguschensis (Renngarten) and Iostrigonia abichi (Anthu-la) are known from the Caucasus, from Mangyshlak and from Turkmenistan. Litschkotrigonia inguschensis has undoubtedly evolved from Quadratotrigonia nodosa (J. de C. Sowerby) which has a much wider geographic distribution. Many taxa are comparable (Table 1) to Aptian faunas from the Isle of Wight (Woods 1899 - 1913). However, due to intensive collecting over almost two-hundred years, the faunas of the latter locality are amongst the best known Cretaceous faunas and therefore diversity of the coeval Tuarkyr faunas cannot be judged with the same criteria. Research in Tuarkyr started relatively recently and both natural and logistic difficulties in accessing the outcrops have limited the extent of data collection compared to the Isle of Wight.

Ammonite biostratigraphy.

Due to the natural exposure of the succession along cuestas devoid of any vegetal cover, we were able to follow the different stratigraphic Layers and to check the correlation between the different sections studied.

The faunas sampled do not have a continuous stratigraphic distribution in the sections but are concentrated in relatively few fossiliferous beds.

Deshayesites tuarkyricus Zone - The older Layers sampled are located at the base of Section 1. Because no ammonites were found, these rocks are assigned to the uppermost Barremian on the basis of the literature. The entry of the genus Deshayesites, marking the base of the Aptian, was recorded in layer 7 with the species Deshayesites antiquus Bogdanova which indicates the D. tuarkyricus Zone (Bogdanova, 1971a, 1979, 1983; Bogdanova & Tovbina 1995; Bogdanova & Prosorovsky, in print). The marker species was found higher in the section, in Layer 9, and seems to postdate D. antiquus. A similar distribution is described by Bogdanova & Prosorovsky (in print) in the section "Utuludzha" (located west of Tuarkyr, in the Greater Balkhan Range) where D. tuarkyricus was found in a bioclastic bed stratigraphically 50 m above a bed with Deshayesites oglanlensis Bogdanova, D. antiquus and D. aff. antiquus. On the other hand, Bogdanova & Prosorovsky (in print) collected D. antiquus and D. tuarkyricus from the same bed in a section located in southernmost Tuarkyr, in the southernmost part of the Tekedjik ridge, and in Layer 11 of section "Geokdere", whereas D. aff. antiquus and D. tuarkyricus co-occur in Layer 9. It is very difficult to determine whether or not D. antiquus really predates D. tuarkyricus. In fact, the ammonite-bearing bioclastic beds probably correspond to lenses with a restricted lateral extent which does not allow a fine bed by bed correlation.

Deshayesites weissi Zone - Deshayesites similis Bogdanova indicates the beginning of the second ammonite Zone of the Aptian, the Deshayesites weissi Zone. This species was found in Section 2, which corresponds to the same succession exposed in Section 1 but located along the northern flank of Mount Bishik. Though this ammonite was collected from the talus, in the field it was clear that it must have come from the interval between the top of Layer 16 and 4 metres above Layer 15. In Section 1, the bed that contained the speci-
men of *D. similis* might be located within the interval from 6 to 12 metres above the bed where *D. tuarkyricus* was found. In Layer 12 of Section 1 a rich, although poorly preserved, ammonite fauna was found. The was found. In Layer 12 of Section 1 a rich, although poorly preserved, ammonite fauna was found. The

The arrow indicates the end of the phragmocone, where visible.

All of the material is housed in the Museo di Paleontologia of the University of Milan.
is the first ammonitiferous bed recognized above the marker Layer with glauconite-coated nodules. However, ammonites of the same zone were found in Sections 3 and 4 below Layer 8, which is the lateral equivalent of Layer 2 in Section 2; among them a specimen of *Epicheloniceras* cf. *buxtorfi* (Jacob) in Layer 7 of Section 3. In England this species occurs in the upper part of the *Epicheloniceras martinioides* Zone (the equivalent of the *E. subnodosocostatum* Zone), in the *Epicheloniceras buxtorfi* Subzone (Casey, 1961). Therefore, these *Epicheloniceras* - bearing beds correspond to the upper part of the English *E. martinioides* Zone. In the Tuarkyr area at least, the chronologic equivalence between the *E. subnodosocostatum* and the *E. martinioides* Zones (Bogdanova & Tovbina, 1995) seems to be questionable. Accordingly, in the Tuarkyr the genus *Caspianites* occurs in Layers that are younger than in England, where it disappears in the middle of the *E. martinioides* Zone, i. e. the *Epicheloniceras gracile* Subzone (Casey et al., 1998).

Conclusions.

New, detailed, stratigraphic data on the vertical distribution of both ammonite and bivalve faunas were obtained during the expedition in the southern Tuarkyr through bed by bed description of six sections spanning the interval from the uppermost Barremian to the first ammonite-zone of the upper Aptian. The integration of these new data with complementary data from section "Geokdere" allows us to improve the knowledge of the Aptian stratigraphy of the Tuarkyr.

Both ammonite and bivalve faunas have a scanty, discontinuous distribution within the lithologic successions. Most of the ammonitiferous beds recognized correspond to bioclastic lenses that do not correlate with each other. The ammonite faunas generally show low diversity; only the genus *Deshayesites* was found in the lower Aptian whereas *Epicheloniceras* and *Caspianites* characterize the layers of the basal upper Aptian. However, southwards in both southernmost Tuarkyr and the Greater Balkhan the faunas are slightly more diverse: deshayesitids are always dominant but *Phyllopachyceras, Protetragonites, Pseudohaploceras, Pseudosaynella, Toxoceratoides* and *Cheloniceras* (C.) occur in Lower Aptian strata. The species *Deshayesites spathi* and *Epicheloniceras buxtorfi* are reported for the first time from Turkmenistan.

The range of the Turkmenian *E. subnodosocostatum* Zone does not seem to correspond to the entire

PLATE 2

Fig. 1 - *Epicheloniceras* gr. *tschernyschevi* (Sinowsk, 1906). Tuarkyr, Section 3, Layer 8b, Late Aptian *Epicheloniceras subnodosocostatum* Zone. Specimen MPUM 8272/2, x1. Totally septated specimen.

The specimen is housed in the Museo di Paleontologia of the University of Milan.

PLATE 3

Fig. 1 - *Epicheloniceras* gr. *tschernyschevi* (Sinowsk, 1906). Tuarkyr, Section 4, Layer 3, Late Aptian *Epicheloniceras subnodosocostatum* Zone. Specimen MPUM 8273, x1. Totally septated specimen.

Fig. 2 - *Liochotoceras* inguchensis (Renngarten, 1926): left valve, composite mold. Tuarkyr, Section 3, Layer 8b, Late Aptian *Epicheloniceras subnodosocostatum* Zone. Specimen MPUM 8317/1, x 3/4.

Fig. 3 - *Iotrigonia* abichi (Anthula, 1899): right valve. Tuarkyr, Section 1, Layer 7, Early Aptian *Deshayesites tuarkyricus* Zone. Specimen MPUM 8309/1, x 1.5.

All of the material is housed in the Museo di Paleontologia of the University of Milan.

PLATE 4

Fig. 1 - *Gerullites sublanceolatus* (d'Orbigny, 1850): 1a, fragment of right valve; 1b, fragment of right valve, inside. Tuarkyr, Section 1, Layer 6, uppermost Barremian. Specimen MPUM 8307/1, x 1.

Fig. 2 - *Gerullites sublanceolatus* (d'Orbigny, 1850): 2a, fragment of right valve; 2b, fragment of left valve, inside. Tuarkyr, Section 1, Layer 6, uppermost Barremian. Specimen MPUM 8307/2, x 1.

Fig. 3 - *Aetostreon latisinum* (Lamarck, 1801): left valve. Tuarkyr, Section 3, Layer 8b, Late Aptian *Epicheloniceras subnodosocostatum* Zone. Specimen MPUM 8315/1, x 1/2.

Fig. 4 - *Aetostreon latisinum* (Lamarck, 1801): right valve, Tuarkyr, Section 3, Layer 8b, Late Aptian *Epicheloniceras subnodosocostatum* Zone. Specimen MPUM 8315/2, x 1/2.

Fig. 5 - *Ceratostreon tuberculiferus* (Koch & Dunker, 1837): left valve; Tuarkyr, Section 1, top of the Urgonian facies (sample SWG 1), Upper Barremian. Specimen MPUM 8301/1, x 2.

Fig. 6 - *Astarte* karajmanica Prosovsky, 1961: right valve. Tuarkyr, Section 3, Layer 8b, Late Aptian *Epicheloniceras subnodosocostatum* Zone. Specimen MPUM 8320, x 1.5.

Fig. 7 - *Pterotrigonia ornata* (d'Orbigny, 1844): right valve; Tuarkyr, Section 2, Layer 2, Late Aptian *Epicheloniceras subnodosocostatum* Zone. Specimen MPUM 8326, x 2.5

All of the material is housed in the Museo di Paleontologia of the University of Milan.
The Aptian Stratigraphy of NW Turkmenistan

1a
1b
2a
2b
3
4
5
6
7
range of the English *Epichelonicerus martinioides* Zone. At least in the area investigated the faunas indicate only the upper part of the latter Zone, i.e. the *Epichelonicerus buxtorfi* Subzone.

The bivalve faunas are typical of generally shallow, sandy facies. Though affinities with the bivalves of the Isle of Wight are undeniable, this Tethyan fauna contains the sandy facies. Though affinities with the bivalves of the upper part of the latter Zone, i.e. the *D. luppovi*. Isle of Wight are undeniable, this Tethyan fauna contains sandy facies. Though affinities with the bivalves of the upper part of the latter Zone, i.e. the *D. luppovi*.

Therefore, the Turkmenian biota does not seem to have been biogeographically isolated from other areas.

The impoverished character of the ammonite fauna is probably due to peculiar palaeoenvironmental constraints such as water temperature and low depth.

Acknowledgements.

The expedition in Turkmenistan received the financial support of the "PTP", Peri-Tethys Program. Many hearty thanks to M. Gaetani and E. Garzanti (University of Milan), who shared with F. Cecca the Turkmenian experience, to V. Kalugin and the driver Tolla Polivian for friendly assistance in the field. Franco Paolucci (University of Urbino) produced the drawings. Jean-Jacques Roccabianca (University of Mons) and Wilfried Miseur (Royal Belgian Institute of Natural Sciences) took photographs of the ammonites and bivalves, respectively. We are indebted to Philip Hoedemaeker (Naturalis, Leiden) and Ignocio Dieni (University of Padova), who acted as referees, for criticism and advice that considerably improved the manuscript.

REFERENCES

Bogdanova T. N. (1971a) - Lower Aptian and bordering strata of western and southern Turkmenia (Stratigraphy, ammonites). Thesis Laboratory of Geology of the University of Moscow, pp. 1-30, Moskva (in Russian).

