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Abstract: This study tests the hypothesis of Cretaceous Turn of Geological Evolution (CTGE). It uses
the large dataset on mineral deposits of NE Asia compiled by the US Geological Survey in collabo-
ration with Russian, Mongolian, Korean, and Japanese geological institutions. As predicted, the Tri-
assic—Early Jurassic and Late Cretaceous-Paleogene geodynamic activities in NE Asia were simple,
producing a relatively small amount of mineral deposits (94 and 132, respectively). In contrast, the
greatly increased geodynamic activity around CTGE produced a huge amount of mineral deposits
(288). The Jurassic-Early Cretaceous superplume-related melts were injected into accretionary
wedges that formed along the Pacific-Eurasian margins, whereas adakitic and granitic magmas de-
rived from the shallow slab and lower crust were intruded into the huge intracontinental region.
The characteristic mineral deposits are represented by the unique Jurassic—Early Cretaceous plume-
related Ti-Fe-V (+P + Cr-PGE + Au + diamond) ores. Other CTGE representatives are the porphyry
Cu-Mo and Au (+Ag)-vein deposits, which formation, however, continued into the Late Cretaceous—
Paleogene epoch. These deposits were generated by the slab- and crust-derived adakitic and granitic
melts formed under influence of the expiring superplume and intensifying subduction. The Late
Cretaceous-Paleogene epoch is indicated by a decreasing metallogenic activity in general, and an
increasing role of subduction-related deposits in particular.

Keywords: Cretaceous turn of geological evolution; northeast Asia; metallogenic belts; mineral
deposits; superplume; flat subduction

1. Introduction

This study examines the hypothesis of the Cretaceous turn of geological evolution
(CTGE) [1,2] using the large dataset on mineral deposits and metallogenic belts of NE
Asia that was compiled by the US Geological Survey in collaboration with the Russian
Academy of Sciences, Mongolian Academy of Sciences, Jilin University (Changchun
Branch), Korean Institute of Geology, Mining, and Materials, and Geological Survey of
Japan/AIST [3,4].

The hypothesis suggests that “the galactic seasons of the Earth indicate significant
changes caused by its distance from the Sun while that star was in transit along its ellip-
tical orbit” [5]. According to references [1,2], the Solar System periodically passes through
critical points of its galactic orbit (apo- and pericenters) that should lead to some global
phases of geological evolution. The last event of this kind happened in the Early Creta-
ceous (around 135 Ma) when our star (the Sun) likely passed the apocenter, the most dis-
tant point of its galactic orbit. During this event, the Earth underwent maximum exten-
sion, associated with its relative closeness to the Sun and then long-term contraction re-
lated to its distancing. In addition, a liquid nature of the Earth’s core reacted to the
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gravitational and electromagnetic changes in the nearest part of the Universe. Turbulent
flows in the outer core favored the rise of voluminous magmatic plumes and associated
fluid flows. The plumes and flows substantially transformed the mantle, crust, hydro-
sphere, biosphere, and atmosphere [1,2]. These, with associated juvenile events, produced
numerous metallic ore, coal, gas, and oil deposits. This study presents evidence of this
anomalously high metallogenic activity that has made the Cretaceous one of the most sig-
nificant resource-producing periods in the Earth’s history.

The present study includes data from a key region of Cretaceous magmatic and min-
eralization activity involving adakite rock suites within an indicated East Asian adakite
province. Adakite rocks now encompass a range of defined characteristics and genetic
interpretations within their petrologic make up and a brief synopsis of their nature and
tectonic applications is presented here. The term adakite originally described siliceous arc
igneous rocks with distinctive chemical compositions having low Y and Yb values and
high Sr/Y, La/YDb ratios and were thought to represent melting of young, subducted ocean
floor. In later studies their geochemistry widened and these adakite-like lithologies in-
voked other proposed genetic models [6,7].

2. Sources of Data and Methods of Interpretation

The consulted metallogenic reviews of NE Asia [3,4] have gathered information on
many hundred mineral deposits for a very large region (Figures 1-3) and provide a unique
platform to undertake the task of this study. These reports not only classified data on the
deposits based on their age, commodity, size, genesis, and geographic location, but also
grouped the deposits into metallogenic belts associated with various magmatic units re-
lated to different geodynamic settings. The latter include collision/accretion-, subduction-
, transform plate boundary-, and plume-related settings.
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Figure 1. Paleotectonic reconstruction of NE Asia at 210 Ma, showing metallogenic belts of the Tri-
assic—Early Jurassic (230-175 Ma) age [4]. North Asian Craton Margins: NAE—East Angara, NAP —
Patom-Baikal; NAV —Verkhoyansk; Intracontinental sedimentary basins: bu—Bureya, nw—West-
ern Siberia, sab—South Aldan, yj—Yanji-Jixi-Raohe; Terranes: AK—Avekov, KN—Kular-Nera,
KNG —Nagondzha, KOM—Kolyma-Omolon, KOP—Prikolyma, KOV —Omulevka, OH—Okhotsk,
HSZ—Honam Shear Zone; Strike-slip Faults and shear zones: IR—Irtysh, KA —Kuznetsk-Altai,
MMO—Main Mongol-Okhotsk, RA-T—Rudny Altai-Taimyr; METALLOGENIC BELTS (green):
CH—Central Hentii, DE—Delgerhaan, GB—Govi-Ugtaal-Baruun-Urt, HL—Harmorit-Hanbogd-
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Lugiingol, KG—XKalgutinsk, MTC—Mino-Tamba-Chugoku, MA—Mongol Altai, NH—North
Hentii, NK—North Kitakami, NT—North Taimyr, SCS—Sambagawa-Chichibu-Shimanto, WZ —
Waulashan-Zhangbei.
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Figure 2. Paleotectonic reconstruction of NE Asia at 145 Ma, showing metallogenic belts of the Mid-
dle Jurassic—Early Cretaceous (175-96 Ma) age [4]. East Asian Adakitic Province is shown after [2].
The distribution of meimechite—picrite complex is suggested basing on the studies by [8-11]. North
Asian Craton Margins: NAE—East Angara, NAP —Patom-Baikal; NAV —Verkhoyansk; Intraconti-
nental sedimentary basins: el —Erlian, hlt—Hailar-Tamsag, ky —Kyongsang, nw —Western Siberia,
pki-llin’-Tas, sab—South Aldan, sol —Songliao; Terranes: AK— Avekov, KY —Kotel'nyi, KOM —Ko-
lyma-Omolon, KOP—Prikolyma, KOV —Omulevka, NU—Nutesyn, OH—Okhotsk, VE—Velmay;
Active continental margins and granite belts: db—Daebo, jh—Jihei, se—Selenga, st—Stanovoy,
trb—Trans-Baikalian-Daxinganling; METALLOGENIC BELTS: AR—Ariadny, AY—Allakh-Yur’,
BD —Bindong, CA —Chara-Aldan, CH—Chybagalakh, DL —Djeltulaksky, DS—Dzid-Selenginskiy,
DX—Daxinganling, EM —East Mongolian-Priargunskiy-Deerbugan, GT—Govi-Tamsag, HS—Har-
tolgoi-Sulinheer, JLL —Jiliaolu, KD —Kondyor-Feklistov, KK—XKitakami, KU—Kular, NB—North
Bureya, NC—Nerchinsky, NJ—North Jilin, NS—North Stanovoy, OT—Onon-Turinskiy, PO—
Polousny, SM—Samarka, ST—Shilkinsko-Tukuringrskiy, TB—Taebaegsan, TO—Tompo, VI—
Verkhne-Ingodinsky, = VK—Verkhoyansk, = YA-Yana-Adycha, = SCS—Sambagawa-Chichibu-
Shimanto. Other symbols are in Figure 1.
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Figure 3. Paleotectonic reconstruction of NE Asia at 87 Ma, showing metallogenic belts of the Late
Cretaceous-Paleogene (96-24 Ma) age [4]. North Asian Craton Margins: NAE —East Angara, NAP-
Patom-Baikal, NAT —South-Taimyr, NAV —Verkhoyansk; Intracontinental sedimentary basins: az
-Amur-Zeya, ed —Erduosi, el —Erlian, hlt—Hailar-Tamsag, loa—Lower Amur, sol—Songliao, tt—
Tastakh, ui—Ust Indigirka, ule—Ust Lena, zr—Zyryanka; Terranes: AV—Alkatvaam, MAI—
Mainitskiy, WSA—West Sakhalin; Active continental margins and granite belts: ko—Khingan-
Okhotsk, bug—Bulgugsa; METALLOGENIC BELTS: BK —Badzhal-Komsomolsk, CC —Chokhchur-
Chekurdakh, CH—Chelasin, CP—Central Polousny, EB—Eckyuchu-Billyakh, EY—Ezop-Yam-
Alin, GN—Gyeongnam, GP—Gyeongpuk, HD—Hidaka, IS]—Inner Zone Southwest Japan, KA—
Khandyga, KU—Kukhtuy-Uliya, LZ—Luzhkinsky, MK-—Malo-Khingan, PD—Preddzhug-
dzhursky, PL—Pilda-Limuri, SCS—Sambagawa-Chichibu-Shimantomk, SE —Selennyakh, ST—Ser-
geevka-Taukha, SV—South Verkhoyansk, TA—Tumnin-Anyuy, TAR—Taryn, UY—Upper
Uydoma. Other symbols are in Figure 1.

To interpret the data for better correlation, the DATABASE by [3]
(https://pubs.usgs.gov/of/2003/0f03-220/DATABASE/, accessed on 23 March 2022) was re-
organized into an Excel file (Supplementary Table S1) that may be downloaded from the
MINERALS website. In the table, the lode deposits are grouped into three age ranges,
particularly Late Triassic-Early Cretaceous (230-175 Ma), Middle Jurassic-Early
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Cretaceous (175-96 Ma), and Late Cretaceous—-Paleogene (96-24 Ma). Note that numerical
ages of the metallogenic epochs, which are used after [3], do not accurately represent sub-
divisions of the modern International Stratigraphic Chart (www.stratigraphy.org). How-
ever, they roughly correspond to the galactic seasonality [1,2]. In particular, the time in-
terval of 230-175 Ma corresponds to the galactic spring, 175-96 Ma to the galactic summer
focusing on the CTGE time (135-120 Ma), and 96-24 Ma to the galactic autumn.

3. Results and Discussion

In the proposed hypothesis [2], CTGE should be expressed in a distinct burst of en-
dogenous activity and associated ore deposits. Figures 1-3 showing the temporal and spa-
tial distribution of metallogenic belts and mineral deposits confirm this suggestion. The
geodynamic classification of the deposits in this study was completely adopted from the
database-compilers [3,4]. We only combined the plume- and transform plate-related belts
and deposits into one geodynamic category, since the transform plate-related belts and
deposits are considered doubtful, as is discussed below, in Section 3.1.

The Middle Jurassic-Early Cretaceous epoch was evidently richer in magmatic and
metallogenic activities than the previous and following periods. Figure 4 quantitatively
supports this distribution.

20
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Figure 4. Age distribution of metallogenic belts and mineral deposits of NE Asia based on the data
from [3,4]: (A-C)—total numbers, (D-F)—total number vs. duration of the corresponding metallo-
genic epoch (in million years).

Indeed, the time span including CTGE is distinguished by an anomalously high
amount of mineral deposits, including the large ones. The deposits formed in the settings
of transform plate boundaries and mantle plumes, as classified by [3,4], are especially nu-
merous in this epoch (211 totally, including 56 of large size; Figure 4B,E). In contrast, the
following Late Cretaceous-Paleogene epoch is predominantly subduction-related depos-
its, among which large deposits are very rare. Many of these deposits are associated with
multi-stage magmatic complexes that began to form in the previous CTGE-related epoch.

3.1. Plume-Subduction Interaction during CTGE

Our data-sourcing reviews [3,4] attributed most metallogenic and magmatic belts of
the Middle Jurassic-Early Cretaceous age to transform-plate boundaries and mantle
plumes (Figures 2 and 4), among which the former absolutely predominate. The rare
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plume-related settings are associated with intra-plate magmatism. However, the abun-
dant transform-plate boundaries are doubtful settings for magmatism because of the fol-
lowing reasons:

e The paleo-reconstruction of Figure 2 does not show any significant transform plate
boundary, although strike-slip faults that transect the Eurasian plate including the
Sino-Korean Craton are abundant;

e  Magmatism in any form is less common along major strike-slip faults including
transform plate boundaries [12], whereas it is widespread, forming numerous mag-
matic units in the Middle Jurassic-Early Cretaceous East Asia (Figure 2).

The review [2] presented an original geodynamic model for the widespread and het-
erogeneous magmatic, tectonic, and metallogenic activity in the Jurassic-Early Cretaceous
East Asia assemblages. The model suggests a superplume arrived below an oceanic slab,
flattening its subduction profile under the East Asian continental margin for tens of mil-
lions of years in the Jurassic and especially during the Early-Middle Cretaceous. Numer-
ous slab windows developed via lateral extension above the plume, which could provide
heat flows ascending through the slab, thus generating magmatic intrusions and fluid
flows. A combination of partial melts in the upper slab, a thinned mantle wedge, and
thickened lower crust, produced a complex suite of arc-type adakites, normal subduction-
related rocks (volcanics and granites), and continental-type adakites accordingly [13-19].
Some plume-related complexes of East Russia, Japan, Northeast China, and Mongolia [8—
11,20] also formed a part of this suite. The more recent tectonic and petrological studies
[21-23] strongly confirmed this suggestion. The East-Asian Adakitic Province in Figure 2
shows a surficial projection of the plume-flat subduction interaction that provided the
anomalous endogenous and metallogenic activities in the region during CTGE.

The mantle superplume considered above is of regional extent and, therefore, cannot
alone justify the global/galactic attribution of the CTGE model. However, it may be corre-
lated with many other plumes from different parts of the world. They are indicated by the
following LIPs: Madagscar (90 Ma), Broken Ridge (95 Ma), Wallaby Plateau (96 Ma), Hess
Rise (99 Ma), Central Kerguelen (100 Ma), Agulhas Plateau (100 Ma), Nauru (111 Ma),
Southern Kerguelen (114 Ma), Rajmahal-Sylhet Traps (118 Ma), Whitsunday (120 Ma),
Ontong Java (121 Ma), Manihiki Plateau (123 Ma), Maud Rise (125 Ma), High Arctic (Alfa
Ridge) (130 Ma), Bunbury Basalts (132 Ma), Comei (132 Ma), Parana-Etendeka (132 Ma),
Gascoyne (136 Ma), Magellan Rise (145 Ma), Shatsky Rise (147 Ma), Argo Margin (155
Ma), and NW Australia (160 Ma) [24]. Note that eight of them occurred at 120-132 Ma, the
time of the suggested cosmic event responsible for CTGE.

3.2. Characteristic Ore Deposits

According to the geodynamic model described above, major endogenous activity in
NE Asia during CTGE was expressed by magmatic units related to the mantle plume and
flat subduction—mafic-ultramafic and adakitic complexes, respectively. Short descrip-
tions of some mineral deposits, that are related to these magmatic complexes and, thus,
characterize the CTGE metallogenic epoch, are presented below. The deposits are located
in the Russian Far East, the geology of which is familiar to the authors of this study.

3.2.1. Mafic-Ultramafic Related Deposits, Ariadny Metallogenic Belt, Russian Far East

Magmatic bodies and related ores of the Ariadny belt are hosted by the Samarka ac-
cretionary wedge including fragments of Paleozoic ophiolitic rocks and greenstone, Car-
boniferous-—Early Permian limestone, Middle Triassic chert, and Triassic-Jurassic clastic
rocks (Figure 5). In some places, they are associated with meimechite and picrite flows
occuring among the Jurassic shales. The ultramafic volcanic rocks of the meimechite-pic-
rite complex bear some microscopic diamonds [25] and probably source fine-crystalline
diamonds (carbonado) up to 8 mm in size into the local placer deposits [10] (Figure 5).
Intrusive members of the complex commonly occur as small (2-15 km?) elongated bodies
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differentiated from dunite (in cores) through wehrlite to clinopyroxenite and gabbro that
sometimes are cut by syenite and carbonatite [26]. They are hosted by shales and cherts
and intruded by the explosive picrite pipes. Gabbro and pyroxenite include iron-titanium
deposits with gold and platinum mineralization, while alkaline rocks (syenites) contain
REE mineralization. Rich ilmenite placers with commercial contents of gold and platinum
accompany the massifs. Larger elongated (up to 15 km) massifs are hosted by volcanic
and siliceous bedrocks. They are less differentiated and consist of wehrlite-dunite lenses
intruded by numerous veins of pegmatitic clinopyroxenite.
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Figure 5. Location of the Jurassic—Early Cretaceous meymechite-picrite and Early Cretaceous ada-
kite complexes and related mineral deposits in the Russian Far East (after [10,26] with additions
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from [18]). 1 —Khanka crystalline massif; 2—Late Paleozoic (Laoelin-Grodekov) fold belt; 3—Meso-
zoic (Sikhote-Alin) fold belt; 4 —volcanic area of the Jurassic—Early Cretaceous accretionary wedge;
5-7—alkali-ultrabasic complex: 5—diatreme, 6—meymechite subvolcanic body; 7—dunite-pyroxe-
nite intrusion; 8 —diamond occurrence in the gold placer; 9—general fault; 10—small intrusions of
the Early Cretaceous adakitic rocks.

The detailed mineralogical, isotopic (Nd, Sr, C, O) and geochemical petrological stud-
ies [8,10,23,25-30] clearly identified a deep enriched mantle source of the meimechite-pic-
rite rocks (Figure 6) that is close to the source of the kimberlitic melts. The kimberlitic
affinity is especially well manifested by the mineral suite including diamond, picroilmen-
ite, and Ti-rich Cr-spinel (Figure 7).
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DMM | ]
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Figure 6. Isotopic-geochemical evidence of interaction between mantle plume and subduction in the
Sea-of-Japan region (simplified from [23]). (A) Sr-Nd isotopic compositions of the Jurassic—Early
Cretaceous mafic-ultramafic and adakitic rocks (after [18]) with addition from [31] for rocks of the
Lazurnoe porphyry Cu-Mo (+Au, Ag) deposit. (B) Th/YDb versus Ta/Yb (after [32]) in the late Paleo-
zoic-Early Cenozoic mafic rocks. The MORB, Mid-Ocean Ridge Basalt; DMM, Depleted Mantle
Member; WPB, Within-Plate Basalt; HIMU, EM1, and EM2, enriched mantle sources [33].
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Figure 7. TiO2 vs. Cr/(Cr + Al) and ALOs diagrams by [34,35], respectively, for Cr-spinel from the
meimechite-picrite complex of Sikhote-Alin (simplified from [23]). MORB, Mid-Ocean Ridge Basalt;
OIB, Oceanic Island Basalt; ARC, Arc (subduction-related) basalts; BABB, Back-Arc Basin basalt.
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The Ariadny metallogenic belt is represented by three large deposits, namely the
Katenskoe, Ariadnoe, and Koksharovskoe deposits (Figure 5).

The Koksharovskoe Ti-Fe(+V)-P deposit is the best studied (Figure 8) [29,36-38]. It
consists of disseminated ilmenite, Ti-magnetite, titanite, and apatite that occur in the sye-
nite (carbonatite)-pyroxenite ring bodies with U-Pb zircon ages of 149-161 and 9698 Ma
(samples 26, 28, and 32 from http://geochron-atlas.vsegei.ru/, in Russian, accessed on 23
March 2022). Two Ti-Fe(+V) ore types are distinguished: (1) Mg-rich (up to 7.6 wt% MgO)
ilmenite associated with primary magmatic pyroxenite from the intrusion cores; and (2)
titanite—ilmenite-magnetite suite in the altered biotite-bearing pyroxenite [38]. Vanadium
is abundant in Ti-rich magnetite, while REE and Ta are associated with titanite. Minor
PGE minerals also occur in association with Cr spinel and ilmenite. Some intrusive rocks
are weathered, including economic concentrations of vermiculite. The average ore grades

are 1 to 10% P20s, and 3.3 to 4.5 % TiO: [3].
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Figure 8. Geological map of the Koksharovka alkaline ultrabasic massif (after [29,36,38]). (1) Stream
sediments; (2—4) Triassic Jurassic siliceous—terrigenous—volcanic rock complex (matrix of the accre-
tionary wedge) with lenses and beds of siliceous (3) and volcanic (4) rocks: basalt lavas and tuffs;
(5) Late Cretaceous granite; (6-9), alkaline ultrabasic complex: biotite-bearing pyroxenite (6), am-
phibole-bearing pyroxenite (7), syenite dike (8) and carbonatite (9); (10) diabase and gabbro-diabase;
(11) proven (a) and supposed (b) faults; (12) contours of the pyroxenite body beneath the alluvial

deposits inferred from geophysical data.

The AriadnoeTi-Fe(+V) deposit [39] also consists of abundant disseminated ilmenite
that occurs in layers of pyroxene-hornblende gabbro and pyroxenite in layered intrusions.
The ilmenite-bearing layers are several tens of meters thick and several hundred meters
long. The K-Ar data of coexisting kaersutite and Ti-biotite from the latest picrite pipes and
from the ring intrusion show a short age interval of 159-152 Ma. Ilmenite contains rare
PGE inclusions. The average ore grades are 1.0 to 11.8% TiO2 and 0.086% V205 [3].

The KatenskoeTi-Fe(+V)-Cr-PGE deposit [37] consists of disseminated ilmenite in
Early Cretaceous pyroxene-hornblende gabbro and olivine gabbro. The deposit consists
of lenticular bodies that are several tens of meters thick and at least 1 km long.
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Generally, the meimechite-picrite complex and associated ores represent a rare, prob-
ably unique phenomenon of superplume-related melts and fluids injected into an accre-
tionary wedge, which, at the time of injection, was under formation conditions.

3.2.2. Adakite-Related Deposits, Seregeevka-Taukha and Luzhkinsky Metallogenic Belts,
Russian Far East

In contrast to the mafic-ultramafic-related deposits, the adakite-related Au-veins and
porphyry Cu-Mo (+Au, Ag) ores of Sikhote-Alin formed in the post-accretionary circum-
stances. Sodov et al. [3], based mainly on the K-Ar dates, attributed them to the Sergeevka-
Taukha and Luzhkinskymetallogenic belts of the Late Cretaceous (96-72 Ma) age (Figure
3). However, the more recent U-Pb zircon dating of the Krinichnoe (Sergeevka-Taukha
belt) and Lazurnoe (Luzhkinsky belt) deposits allows reconsideration of this definition.
The ore-related adakites of the former showed 131.4 + 1.5 Ma [18], while the latter
was103.5 + 1.5 Ma [31], indicating the previous CTGE-associated metallogenic epoch, alt-
hough a later alteration of the major ores is highly probable.

The Jurassic-Early Cretaceous ore-related adakitic rocks of Sikhote-Alin are well de-
scribed in the literature [18; and references therein]. They are typical arc adakites, derived
from subducted slab melts in contrast to continental-type adakites that are widely distrib-
uted in the intracontinental parts of East Asia and derived from the lower crustal melts
[14-18,40].

The Askol’d Au-vein deposit is located at the Askol’d Island in Peter-the-Great Bay,
northwestern Japan Sea (Figures 5 and 9). It is associated with the intrusive complex rep-
resented by two stock-like bodies of biotite-hornblende granitoids named the Central and
Western intrusions [41]. They are located in the middle and northwestern parts of the is-
land, respectively. Both intrusions are composed of medium-grained biotite-hornblende
adakitic granitoids with numerous inclusions of fine-grained diorite ranging from 5 to 20
cm in size. The age of adakites, according to the results of Rb-Sr isotopic dating is 104 Ma,
and the K-Ar biotite date is about 98 Ma [42,43]. Both large intrusive bodies are accompa-
nied by numerous dikes and veins consisting of granite-aplites, pegmatites, quartz, gran-
ite-porphyries, dacitic, andesite-dacitic, and diabase porphyrites. Their thickness varies
from 0.1 to several tens of meters, whereas the length is up to 300 m. The ores are confined
to the eastern contact of the Central massif, which contains numerous apophyses. They
are represented by an Au-quartz vein stockwork in the granitoids that are altered into
greisen. The deposit is prospected to depths of more than 100 m. It is medium in size, with
Au grades of 5.9 to 7.6 g/t Au [3]. The lode ores are associated with on-land and off-shore
gold placers.
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Figure 9. Geological map of the Askol’d Island (after [41]). 1—soft sediments; 2—Middle Jurassic
sandstones and mudstones; 3—Lower Triassic conglomerates and sandstones; 4 —Lower Permian
quartz porphyry; 5—Silurian-Devonian metamorphosed conglomerates, biotite hornfelses, and
meta-effusives; 6—Cretaceous dikes of diorite (duK2), granite and aplite veins (YK2); 7—Cretaceous
biotite-hornblende adakiticgranitoides and plagiogranites; 8 —Middle Paleozoic granodiorites, dio-
rites, gabbro-diorites; 9—geological boundaries; 10—faults proven (a) and supposed (b); 11—find-
ings of fossil fauna; 12— ore-bearing tectonic zones (a) and the site of old mines (b).

The Krinichnoe Au (+Ag)-vein deposit is located on land, 13 km to NNE of the
Askol’d deposit [43,44]. Geology of the two deposits is similar. The Krinichnoe lode de-
posit consists of gold-pyrite-quartz and quartz-carbonate zones in the adakitic granitoid
pluton that intrudes metamorphosed Paleozoic volcanic and sedimentary rock. Sulfide-
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poor gold—pyrite-quartz ores occur in bodies of variable shape and size. They contain up
to 2.8 g/t Au and up to 171 g/t Ag [3].

The Lazurnoe porphyry Cu-Mo (+Au, Ag) deposit is associated with an asymmetric
intrusive massif hosted by the Early Cretaceous turbidites [3,31]. The massif consists of
two bodies, namely the North and South Stocks that were formed one after another (Fig-
ure 10). The early phase (North Stock) has a K-Ar hornblende age of 110 + 4 Ma. It is
represented by monzo-gabbro-diorites, which geochemistry indicate the crustal contami-
nation and following magmatic differentiation (appearance of more felsic rocks, d¥Os-
mow = 8.3%. in plagioclase, 76Hf/177Hf = 0.2822227 — 0.2826510 in zircon, 3Nd/"*Nd =
0.512579 + 5 and #5r/8¢Sr = 0.705155 + 14; Figure 6; [31]). The second phase (South Stock)
with the U-Pb zircon age of 103.5 + 1.5 Ma (SHRIMP) consists of adakitic monzodiorite
with no signs of crustal contamination. It represents a more primitive magma based on its
trace-element (Figure 11) and isotopic compositions (0'¥Osmow = 5.9%o in hornblende,
176Hf/177Hf = 0.2828270 — 0.2831770 in zircon, *Nd/*Nd = 0.512733 + 3 and Sr/%Sr =
0.704569 + 12; Figure 6) [31].

100 0 100200300400 500 m
A TETETET
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Figure 10. A geologic scheme of the Lazurnoe deposit (after [31] and references therein). (1) Early
Cretaceous sedimentary rocks; (2) adakitic monzodiorite and monzo-gabbro-diorite (2nd phase); (3)
gabbro—monzodiorite and diorite (1st phase); (4) dykes of quartz monzodiorite; (5) quartz—sulfide
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veins and porphyry sulfide ores; (6) projections to the surface of: (a) the hidden porphyritic massif,
(b) the copper-porphyry mineralization; (7) hydrothermal alterations: (a) potassium-feldspar, (b)
propylitic; (8) the study area.
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Figure 11. Multicomponent diagrams for magmatic rocks of the Lazurnoe deposit, normalized to
the primitive mantle (after [31]). 1 and 2—adakitic monzodiorites from the South Stock; 3 and 4—
gabbro-monzodiorites from the North Stock.

Ores of Lazurnoe deposit contain up to 3 g/t Au, 0.3-0.6% Cu, 0.008-0.2% Mo. They
are concentrated in and around the North Stock in the form of numerous carbonate-sul-
fide veins and disseminated sulfide grains (Figure 10). The chalcopyrite-bornite-pyrite-
sphalerite-molybdenite mineralization is traced to a depth of 300 m. The sulfides are as-
sociated with propylitic (epidote, chlorite, sericite, and carbonate) and potassium-feldspar
(K-feldspar, biotite, sericite, chlorite, magnetite, sulfides) alterations (Figure 10). Quartz-
carbonate veins with sulfides occur near the surface. The isotopic composition of sulfur
(0%S = +0.3—+0.62) from pyrite and chalcopyrite indicates a magmatic origin of the ores.
The isotopic composition of oxygen (88 Osmow =7.2%o) in plagioclase, which is hosted by
the altered rocks, is evidence for fluid—mantle equilibrium. The ore-related alteration of
the first phase rocks including high-temperature biotite alteration is attributed to the sec-
ond phase melts, which were saturated with fluids. This conclusion is supported by the
K-Ar age of secondary biotite in monzo-gabbro-diorite (101 + 2.5 Ma) from the North Stock
that coincides with the age of the second phase magmatic rocks of the South Stock [31].

Further detailed studies of Mesozoic geological events are available for comparative
considerations in relation to “Turn of the Cretaceous” sequences, magmatic episodes, and
mineralization, within Mesozoic tectonic settings elsewhere. These include examples both
in the NE Asian active margins region to the north [45] and to the eastern paleo-margin
of China [46,47]. The study in the NE Asian active margin in the Verkhoyansk-Kolyma
orogenic belt revealed a dramatic change in the Late Cretaceous sediments of syn-deposi-
tional detrital zircons of 88-90 Ma age. They were derived from the volcanic lavas, vol-
caniclastics and granitoid plutons of the Okhotsk-Chukotka magmatic belt that ended its
activity at 86-87 Ma [45]. The study of Early Cretaceous granitic plutons and their enclaves
in the eastern margin to the Chinese Craton indicated a coeval formation within error at
116-118 Ma and were generated within a partial melting episode during the peak of un-
derlying lithospheric thinning [46]. The specific Cretaceous endogenous processes re-
sulted in the extensive and diverse group of mineral deposits formed from 145 to 70 Ma
along the eastern Asian continental margin from northern Vietnam, through eastern
China, Korea, Japan, and to Far East Russia, representing a good example of a regional
extension-related metallogenic province [47]. The authors of the mentioned studies [42-
44] do not necessarily share our “galactic” view on the Cretaceous evolution, although
their ideas seem close to our ideas, at least, do not contradict them.
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4. Conclusions on the CTGE-Related Metallogeny

As predicted by the CTGE hypothesis, the Triassic—Early Jurassic geodynamic activ-
ity in NE Asia was simple, producing a relatively small amount of metallogenic belts and
mineral deposits related to active and passive continental margins and undeveloped (in-
cipient, granitic) intraplate magmatism (Figure 1). In contrast, the enormous geodynamic
activity around CTGE initiated the Jurassic-Early Cretaceous superplume. The related
melts and fluids injected into an accretionary wedge, when both plume and accretion were
actively developed. At that time, subduction of the Pacific plate was flattened by the su-
perplume under the former eastern Eurasia (Figure 2). This resulted in many metallogenic
belts and mineral deposits that were numerous in amount, large in size, and diverse in
composition. The characteristic ores are represented by the unique plume-related Ti-Fe-V
+ P + Cr-PGE + Au + diamond deposits. Other characteristic representatives of the CTGE
epoch are the porphyry Cu-Mo and Au (+Ag)-vein deposits, which formation, however,
continued in the following Early-Late Cretaceous metallogenic epoch, probably reaching
a maximum in the middle Cretaceous. These deposits were generated by the slab- and
crust-derived adakitic and granitic melts, and fluids intruded into the tectonically consol-
idated Earth’s crust under influence of the same superplume, but at the vanishing stage
of its development. The Late Cretaceous—Paleogene epoch is indicated by a decreasing
metallogenic activity in general, and an increasing role of subduction-related deposits in
particular.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/min12040400/s1, Table S1: The metallogenic belts and lode
deposits of NE Asia for the Triassic—Early Jurassic, Middle Jurassic-Early Cretaceous, and Early
Cretaceous—Paleogene epochs (modified after [3]).
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